Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
BMC Genomics ; 24(1): 143, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959546

RESUMEN

Genomes of four Streptomyces isolates, two putative new species (Streptomyces sp. JH14 and Streptomyces sp. JH34) and two non thaxtomin-producing pathogens (Streptomyces sp. JH002 and Streptomyces sp. JH010) isolated from potato fields in Colombia were selected to investigate their taxonomic classification, their pathogenicity, and the production of unique secondary metabolites of Streptomycetes inhabiting potato crops in this region. The average nucleotide identity (ANI) value calculated between Streptomyces sp. JH34 and its closest relatives (92.23%) classified this isolate as a new species. However, Streptomyces sp. JH14 could not be classified as a new species due to the lack of genomic data of closely related strains. Phylogenetic analysis based on 231 single-copy core genes, confirmed that the two pathogenic isolates (Streptomyces sp. JH010 and JH002) belong to Streptomyces pratensis and Streptomyces xiamenensis, respectively, are distant from the most well-known pathogenic species, and belong to two different lineages. We did not find orthogroups of protein-coding genes characteristic of scab-causing Streptomycetes shared by all known pathogenic species. Most genes involved in biosynthesis of known virulence factors are not present in the scab-causing isolates (Streptomyces sp. JH002 and Streptomyces sp. JH010). However, Tat-system substrates likely involved in pathogenicity in Streptomyces sp. JH002 and Streptomyces sp. JH010 were identified. Lastly, the presence of a putative mono-ADP-ribosyl transferase, homologous to the virulence factor scabin, was confirmed in Streptomyces sp. JH002. The described pathogenic isolates likely produce virulence factors uncommon in Streptomyces species, including a histidine phosphatase and a metalloprotease potentially produced by Streptomyces sp. JH002, and a pectinesterase, potentially produced by Streptomyces sp. JH010. Biosynthetic gene clusters (BGCs) showed the presence of clusters associated with the synthesis of medicinal compounds and BGCs potentially linked to pathogenicity in Streptomyces sp. JH010 and JH002. Interestingly, BGCs that have not been previously reported were also found. Our findings suggest that the four isolates produce novel secondary metabolites and metabolites with medicinal properties.


Asunto(s)
Solanum tuberosum , Streptomyces , Virulencia/genética , Filogenia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Genómica , Enfermedades de las Plantas
2.
Phytopathology ; 112(8): 1783-1794, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35124971

RESUMEN

Late blight disease, caused by the plant pathogen Phytophthora infestans, is one of the major threats for tomato and potato crops. Monitoring the populations of P. infestans is important to determine if there are changes in the sensitivity to fungicides and host preference. In this study, microsatellite markers and mitochondrial haplotypes were used to assess the genotype of isolates of P. infestans collected from tomato and potato plants in Colombia. Furthermore, sensitivity to the three fungicides cymoxanil (penetrant fungicide), mefenoxam, and fluopicolide (systemic fungicides), and tomato-potato host preference, were evaluated. Mitochondrial haplotyping showed that isolates collected on tomato were from the genetic groups Ia and Ib, while isolates collected on potatoes belonged to group IIa. Microsatellite analyses showed that isolates from tomato form two groups, including the Ib mitochondrial haplotype (which is genetically close to the US-1 clonal lineage) and the Ia haplotype (related to the EC-3 lineage), whereas Colombian isolates from potato formed a separate group. Furthermore, differences in sensitivity to fungicides were observed. Eighty-one percent of the isolates tested were resistant to mefenoxam with an EC50 >10 µg ml-1. Forty-two percent of the isolates showed an intermediate resistance to cymoxanil. The EC50 values ranged between 1 and 10 µg ml-1. For fluopicolide, 90% of the isolates were sensitive, with EC50 <1 µg ml-1. Host preference assays showed that potato isolates infected both host species. Thus, isolates that infect potatoes may pose a risk for tomato crops nearby.


Asunto(s)
Fungicidas Industriales , Phytophthora infestans , Solanum lycopersicum , Solanum tuberosum , Colombia , Productos Agrícolas , Fungicidas Industriales/farmacología , Genotipo , Phytophthora infestans/genética , Enfermedades de las Plantas
3.
BMC Genomics ; 22(1): 795, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34740326

RESUMEN

BACKGROUND: Pathogens of the genus Phytophthora are the etiological agents of many devastating diseases in several high-value crops and forestry species such as potato, tomato, cocoa, and oak, among many others. Phytophthora betacei is a recently described species that causes late blight almost exclusively in tree tomatoes, and it is closely related to Phytophthora infestans that causes the disease in potato crops and other Solanaceae. This study reports the assembly and annotation of the genomes of P. betacei P8084, the first of its species, and P. infestans RC1-10, a Colombian strain from the EC-1 lineage, using long-read SMRT sequencing technology. RESULTS: Our results show that P. betacei has the largest sequenced genome size of the Phytophthora genus so far with 270 Mb. A moderate transposable element invasion and a whole genome duplication likely explain its genome size expansion when compared to P. infestans, whereas P. infestans RC1-10 has expanded its genome under the activity of transposable elements. The high diversity and abundance (in terms of copy number) of classified and unclassified transposable elements in P. infestans RC1-10 relative to P. betacei bears testimony of the power of long-read technologies to discover novel repetitive elements in the genomes of organisms. Our data also provides support for the phylogenetic placement of P. betacei as a standalone species and as a sister group of P. infestans. Finally, we found no evidence to support the idea that the genome of P. betacei P8084 follows the same gene-dense/gense-sparse architecture proposed for P. infestans and other filamentous plant pathogens. CONCLUSIONS: This study provides the first genome-wide picture of P. betacei and expands the genomic resources available for P. infestans. This is a contribution towards the understanding of the genome biology and evolutionary history of Phytophthora species belonging to the subclade 1c.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Elementos Transponibles de ADN , Evolución Molecular , Duplicación de Gen , Filogenia , Phytophthora infestans/genética , Enfermedades de las Plantas , Solanum tuberosum/genética
4.
Phytopathology ; 110(7): 1342-1351, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32490753

RESUMEN

In Colombia, late blight is considered one of the most limiting diseases on potato and tomato production. Recently, a new Phytophthora species, P. betacei, was described infecting tree tomato crops in the south of Colombia. However, the distribution and the host range of this new emerging pathogen in the country are unknown. The main aims of this study were to determine if this novel species is confined to the south of Colombia, to assess if P. betacei represents a genetically uniform clone across Colombia and to determine if in all regions there is a clear differentiation between the two Phytophthora species. Therefore, we characterized Phytophthora isolates obtained from tree tomato and potato crops in a central region of Colombia and compared them with the strains from the south. Initially, we evaluated the genetic differentiation among Phytophthora strains obtained from tree tomato and potato crops using simple sequence repeat markers. Results showed a strong population structure between P. infestans and P. betacei. However, we did not detect any genetic differentiation within P. infestans or P. betacei populations from different regions. Furthermore, we detected significant morphological differences among the species based on growth and sporangial morphology measurements. We also showed that strains of Phytophthora spp. are predominantly of the A1 mating type and belong to EC-1 and EC-3 clonal lineages for P. infestans and P. betacei, respectively. Our results describe the expanded geographical range of the new species of P. betacei in the central region of Colombia.


Asunto(s)
Phytophthora infestans/genética , Solanum tuberosum , Colombia , Repeticiones de Microsatélite , Enfermedades de las Plantas
5.
Sci Rep ; 10(1): 4860, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32184419

RESUMEN

The opportunistic pathogen Malassezia pachydermatis causes bloodstream infections in preterm infants or individuals with immunodeficiency disorders and has been associated with a broad spectrum of diseases in animals such as seborrheic dermatitis, external otitis and fungemia. The current approaches to treat these infections are failing as a consequence of their adverse effects, changes in susceptibility and antifungal resistance. Thus, the identification of novel therapeutic targets against M. pachydermatis infections are highly relevant. Here, Gene Essentiality Analysis and Flux Variability Analysis was applied to a previously reported M. pachydermatis metabolic network to identify enzymes that, when absent, negatively affect biomass production. Three novel therapeutic targets (i.e., homoserine dehydrogenase (MpHSD), homocitrate synthase (MpHCS) and saccharopine dehydrogenase (MpSDH)) were identified that are absent in humans. Notably, L-lysine was shown to be an inhibitor of the enzymatic activity of MpHCS and MpSDH at concentrations of 1 mM and 75 mM, respectively, while L-threonine (1 mM) inhibited MpHSD. Interestingly, L- lysine was also shown to inhibit M. pachydermatis growth during in vitro assays with reference strains and canine isolates, while it had a negligible cytotoxic activity on HEKa cells. Together, our findings form the bases for the development of novel treatments against M. pachydermatis infections.


Asunto(s)
Dermatomicosis/microbiología , Proteínas Fúngicas/antagonistas & inhibidores , Fungemia/microbiología , Lisina/farmacología , Malassezia/crecimiento & desarrollo , Treonina/farmacología , Animales , Línea Celular , Dermatomicosis/tratamiento farmacológico , Dermatomicosis/veterinaria , Relación Dosis-Respuesta a Droga , Fungemia/tratamiento farmacológico , Genes Esenciales , Homoserina Deshidrogenasa/antagonistas & inhibidores , Humanos , Malassezia/efectos de los fármacos , Oxo-Ácido-Liasas/antagonistas & inhibidores , Sacaropina Deshidrogenasas/antagonistas & inhibidores
6.
Plant Dis ; 104(4): 1113-1117, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32040390

RESUMEN

Host-pathogen interactions of a new species of Phytophthora, causal agent of late blight of tree tomato (Solanum betaceum Cav.), identified as Phytophthora betacei, were investigated with four different cultivars. Thirty-six P. betacei isolates, collected from southern Colombia between 2008 and 2009, were used to inoculate common tree tomato cultivars, Común, Híbrido, Injerto, and Holandés. Data on incubation and latent periods as well as infection efficiency, lesion development, and total sporulation were collected via detached leaf assays. Significant differences in susceptibility, based on the parameters measured, were observed. Común was the most susceptible cultivar, followed by Injerto, Híbrido, and Holandés. The mean incubation period was lowest for Común at 125.6 h post-inoculation (hpi) and highest for Híbrido at 139.4 hpi. No significant differences in latent period were observed. All 36 isolates produced necrotic lesions on Común, and 33, 24, and 21 caused infection on Injerto, Híbrido, and Holandés, respectively. Two isolates were able to cause infection only on Común, and 13 isolates were able to infect all four cultivars. Infection efficiency was significantly higher for the cultivar Común, followed by Injerto, Híbrido, and Holandés. Average lesion size was larger on Común than on any other cultivar. An inverse relationship of lesion size and total sporulation was observed. Común had significantly lower total sporulation than Híbrido and Holandés, which had the smallest average lesion sizes. These data show variation in pathogenicity of P. betacei isolates, under controlled conditions, and differential susceptibility of four distinct S. betaceum cultivars.


Asunto(s)
Phytophthora , Solanum lycopersicum , Solanum , Colombia , Enfermedades de las Plantas , Árboles
7.
Plant Dis ; 104(1): 211-221, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31765279

RESUMEN

Phytophthora infestans is the causal agent of late blight disease of potatoes and tomatoes. This disease causes devastating economic losses each year, and control is mainly achieved by the use of fungicides. Unfortunately, populations of P. infestans resistant to fungicides have been documented. Furthermore, studies have reported that sensitive isolates to the phenylamide fungicide, mefenoxam, become less sensitive in vitro after a single passage through sublethal concentrations of fungicide-amended medium. The first objective of this study was to investigate if isolates of P. infestans are capable of acquiring resistance to two additional systemic fungicides, fluopicolide (benzamide) and cymoxanil (cyanoacetamide-oxime). In contrast to the situation with mefenoxam, exposure of isolates to sublethal concentrations of fluopicolide and cymoxanil did not induce reduced sensitivity to these two fungicides. The second objective was to assess if reduced sensitivity to mefenoxam could occur in naturally sensitive isolates of other Phytophthora species and of Phytopythium sp., another oomycete plant pathogen. All Phytophthora spp. assessed (P. infestans, P. betacei, and P. pseudocryptogea) as well as Phytopythium sp. acquired resistance to mefenoxam after previous exposure through medium containing 1 µg ml-1 of mefenoxam. Interestingly, isolate 66 of Phytopythium sp. and the isolate of P. pseudocryptogea tested do not seem to be acquiring resistance to mefenoxam after exposure to medium containing 5 µg ml-1 of this fungicide. The tested isolates of P. palmivora and P. cinnamomi were extremely sensitive to mefenoxam, and thus it was not possible to perform a second transfer to access acquisition of resistance to this fungicide.


Asunto(s)
Alanina/análogos & derivados , Farmacorresistencia Fúngica , Phytophthora infestans , Alanina/farmacología , Fungicidas Industriales/farmacología , Phytophthora infestans/efectos de los fármacos , Solanum tuberosum/microbiología
8.
Phytopathology ; 109(1): 145-154, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30474515

RESUMEN

Pathogen variation plays an important role in the dynamics of infectious diseases. In this study, the genetic variation of 279 Phytophthora infestans isolates was assessed using a combination of 12 microsatellite simple-sequence repeat markers. Isolates were collected from 11 different potato cultivars in 11 different geographic localities of the central region of Colombia. The objective of this study was to determine whether populations were differentiated by host genotype or geographic origin. Within a single clonal lineage, EC-1, 76 genotypes were detected. An analysis of molecular variance attributed most of the variation to differences within host genotypes rather than among the host genotypes, suggesting that host cultivars do not structure the populations of the pathogen. Furthermore, the lack of a genetic population structure according to the host cultivar was confirmed by all of the analyses, including the Bayesian clustering analysis and the minimum spanning network that used the Bruvo genetic distance, which suggested that there are no significant barriers to gene flow for P. infestans among potato cultivars. According to the geographic origin, the populations of P. infestans were also not structured, and most of the variation among the isolates was attributed to differences within localities. Only some but not all localities in the north and west of the central region of Colombia showed some genetic differentiation from the other regions. The absence of sexual reproduction of this pathogen in Colombia was also demonstrated. Important insights are discussed regarding the genetic population dynamics of the P. infestans populations of the central region of Colombia that were provided by the results. In Colombia, there is a high genetic variation within the EC-1 clonal lineage with closely related genotypes, none dominant, that coexist in a wide geographic area and on several potato cultivars.


Asunto(s)
Genética de Población , Phytophthora infestans/genética , Enfermedades de las Plantas/microbiología , Solanum tuberosum/genética , Teorema de Bayes , Colombia , Variación Genética , Genotipo , Phytophthora infestans/patogenicidad , Solanum tuberosum/microbiología
9.
BMC Genomics ; 19(Suppl 8): 863, 2018 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-30537923

RESUMEN

BACKGROUND: Phytophthora infestans is a plant pathogen that causes an important plant disease known as late blight in potato plants (Solanum tuberosum) and several other solanaceous hosts. This disease is the main factor affecting potato crop production worldwide. In spite of the importance of the disease, the molecular mechanisms underlying the compatibility between the pathogen and its hosts are still unknown. RESULTS: To explain the metabolic response of late blight, specifically photosynthesis inhibition in infected plants, we reconstructed a genome-scale metabolic network of the S. tuberosum leaf, PstM1. This metabolic network simulates the effect of this disease in the leaf metabolism. PstM1 accounts for 2751 genes, 1113 metabolic functions, 1773 gene-protein-reaction associations and 1938 metabolites involved in 2072 reactions. The optimization of the model for biomass synthesis maximization in three infection time points suggested a suppression of the photosynthetic capacity related to the decrease of metabolic flux in light reactions and carbon fixation reactions. In addition, a variation pattern in the flux of carboxylation to oxygenation reactions catalyzed by RuBisCO was also identified, likely to be associated to a defense response in the compatible interaction between P. infestans and S. tuberosum. CONCLUSIONS: In this work, we introduced simultaneously the first metabolic network of S. tuberosum and the first genome-scale metabolic model of the compatible interaction of a plant with P. infestans.


Asunto(s)
Genoma de Planta , Modelos Biológicos , Phytophthora infestans/fisiología , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/metabolismo , Solanum tuberosum/fisiología , Interacciones Huésped-Parásitos , Redes y Vías Metabólicas , Fotosíntesis , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/parasitología , Proteínas de Plantas/genética , Solanum tuberosum/genética , Solanum tuberosum/parasitología , Transcriptoma
10.
Malar J ; 14: 233, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26040274

RESUMEN

BACKGROUND: The chemical treatment of Plasmodium falciparum for human infections is losing efficacy each year due to the rise of resistance. One possible strategy to find novel anti-malarial drugs is to access the largest reservoir of genomic biodiversity source on earth present in metagenomes of environmental microbial communities. METHODS: A bioluminescent P. falciparum parasite was used to quickly detect shifts in viability of microcultures grown in 96-well plates. A synthetic gene encoding the Dermaseptin 4 peptide was designed and cloned under tight transcriptional control in a large metagenomic insert context (30 kb) to serve as proof-of-principle for the screening platform. RESULTS: Decrease in parasite viability consistently correlated with bioluminescence emitted from parasite microcultures, after their exposure to bacterial extracts containing a plasmid or fosmid engineered to encode the Dermaseptin 4 anti-malarial peptide. CONCLUSIONS: Here, a new technical platform to access the anti-malarial potential in microbial environmental metagenomes has been developed.


Asunto(s)
Antimaláricos/farmacología , Biblioteca Genómica , Pruebas de Sensibilidad Parasitaria , Extractos Vegetales/farmacología , Plantas/química , Plasmodium falciparum/efectos de los fármacos , Biodiversidad , Malaria Falciparum/tratamiento farmacológico , Metagenoma , Plasmodium falciparum/genética
11.
Proc Natl Acad Sci U S A ; 111(24): 8791-6, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24889615

RESUMEN

Phytophthora infestans is a destructive plant pathogen best known for causing the disease that triggered the Irish potato famine and remains the most costly potato pathogen to manage worldwide. Identification of P. infestan's elusive center of origin is critical to understanding the mechanisms of repeated global emergence of this pathogen. There are two competing theories, placing the origin in either South America or in central Mexico, both of which are centers of diversity of Solanum host plants. To test these competing hypotheses, we conducted detailed phylogeographic and approximate Bayesian computation analyses, which are suitable approaches to unraveling complex demographic histories. Our analyses used microsatellite markers and sequences of four nuclear genes sampled from populations in the Andes, Mexico, and elsewhere. To infer the ancestral state, we included the closest known relatives Phytophthora phaseoli, Phytophthora mirabilis, and Phytophthora ipomoeae, as well as the interspecific hybrid Phytophthora andina. We did not find support for an Andean origin of P. infestans; rather, the sequence data suggest a Mexican origin. Our findings support the hypothesis that populations found in the Andes are descendants of the Mexican populations and reconcile previous findings of ancestral variation in the Andes. Although centers of origin are well documented as centers of evolution and diversity for numerous crop plants, the number of plant pathogens with a known geographic origin are limited. This work has important implications for our understanding of the coevolution of hosts and pathogens, as well as the harnessing of plant disease resistance to manage late blight.


Asunto(s)
Evolución Molecular , Phytophthora infestans/genética , Solanum tuberosum/parasitología , Algoritmos , Teorema de Bayes , Colombia , Ecuador , Genotipo , Geografía , Historia del Siglo XIX , Humanos , Irlanda , México , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Perú , Filogenia , Enfermedades de las Plantas/historia , Análisis de Componente Principal , Inanición/historia
12.
Gene ; 537(2): 312-21, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24361203

RESUMEN

The oomycete Phytophthora infestans, causal agent of the tomato and potato late blight, generates important economic and environmental losses worldwide. As current control strategies are becoming less effective, there is a need for studies on oomycete metabolism to help identify promising and more effective targets for chemical control. The pyrimidine pathways are attractive metabolic targets to combat tumors, virus and parasitic diseases but have not yet been studied in Phytophthora. Pyrimidines are involved in several critical cellular processes and play structural, metabolic and regulatory functions. Here, we used genomic and transcriptomic information to survey the pyrimidine metabolism during the P. infestans life cycle. After assessing the putative gene machinery for pyrimidine salvage and de novo synthesis, we inferred genealogies for each enzymatic domain in the latter pathway, which displayed a mosaic origin. The last two enzymes of the pathway, orotate phosphoribosyltransferase and orotidine-5-monophosphate decarboxylase, are fused in a multi-domain enzyme and are duplicated in some P. infestans strains. Two splice variants of the third gene (dihydroorotase) were identified, one of them encoding a premature stop codon generating a non-functional truncated protein. Relative expression profiles of pyrimidine biosynthesis genes were evaluated by qRT-PCR during infection in Solanum phureja. The third and fifth genes involved in this pathway showed high up-regulation during biotrophic stages and down-regulation during necrotrophy, whereas the uracil phosphoribosyl transferase gene involved in pyrimidine salvage showed the inverse behavior. These findings suggest the importance of de novo pyrimidine biosynthesis during the fast replicative early infection stages and highlight the dynamics of the metabolism associated with the hemibiotrophic life style of pathogen.


Asunto(s)
Phytophthora infestans/genética , Phytophthora infestans/metabolismo , Phytophthora infestans/patogenicidad , Pirimidinas/biosíntesis , Empalme Alternativo , Clonación Molecular , Dihidroorotasa/genética , Dihidroorotasa/metabolismo , Orotato Fosforribosiltransferasa/genética , Orotato Fosforribosiltransferasa/metabolismo , Orotidina-5'-Fosfato Descarboxilasa/genética , Orotidina-5'-Fosfato Descarboxilasa/metabolismo , Filogenia , Pirimidinas/metabolismo , Solanum/microbiología
13.
Rev. iberoam. micol ; 30(2): 81-87, abr.-jun. 2013.
Artículo en Español | IBECS | ID: ibc-112578

RESUMEN

Antecedentes. El tizón tardío, causado por Phytophthora infestans, es una enfermedad devastadora de la papa y el tomate a nivel mundial, y en Colombia también ataca otros cultivos como la uchuva y el tomate de árbol. El conocimiento de la población del patógeno es determinante para el diseño efectivo de estrategias de control. Objetivos. Determinar las características fisiológicas y moleculares de aislamientos colombianos de P. infestans. Métodos. El nivel de resistencia al mefenoxam y al cimoxamil fue evaluado en aislamientos de Cundinamarca y Boyacá. Se estimó su virulencia y se determinó la producción y viabilidad de oosporas en diferentes sustratos con cruces entre aislamientos A1 y el aislamiento colombiano A2. Además, se determinó la diversidad molecular en el gen de avirulencia Avr3a, el gen de la β-tubulina y otros dos genes de copia única con motivo RXLR. Resultados. Los aislamientos colombianos tuvieron la posibilidad de reproducirse sexualmente. Encontramos todos los niveles de sensibilidad al mefenoxam, con el 48% de los aislamientos resistentes. Se detectó una diversidad de razas y a nivel genético la población fue clonal. Conclusiones. Estos resultados ayudarán a optimizar el uso de fungicidas y reducir la resistencia como estrategias de control, además de contribuir al conocimiento de la diversidad de este patógeno(AU)


Background. Late blight, caused by Phytophthora infestans, is one of the most devastating diseases found in potato and tomato crops worldwide. In Colombia it also attacks other important crops: cape gooseberry and tree tomato. The knowledge of the pathogen population is determinant to effectively design control strategies. Aims. To determine the physiological and molecular characteristics of a set of Colombian P. infestans isolates. Methods. Strains isolated from Cundinamarca and Boyacá were examined for the level of resistance to mefenoxam and cymoxanil. Virulence was tested for all strains and crosses between A1 mating type, from different hosts, and the Colombian A2 mating type were tested for the production and viability of oospores in different substrates. Additionally, the molecular diversity of the avirulence gene Avr3a, the β-tubulin gene, and two single copy genes showing RxLR motif, was assessed. Results. We found all levels of mefenoxam sensitivity, with 48% of the strains resistant. A high diversity of races was detected and the population was genetically clonal. Colombian strains had the possibility of sexual reproduction. Conclusions. These results will help in optimizing the use of fungicides and deployment of resistance as control strategies and will contribute to broader studies on diversity of this pathogen(AU)


Asunto(s)
Phytophthora infestans/aislamiento & purificación , Phytophthora infestans/patogenicidad , Virulencia , Virulencia/fisiología , Pruebas de Sensibilidad Microbiana/métodos , Pruebas de Sensibilidad Microbiana/tendencias , Sensibilidad y Especificidad , Phytophthora infestans , Virulencia , Factores de Virulencia/aislamiento & purificación , Tubulinos/aislamiento & purificación , Moduladores de Tubulina , Solanum tuberosum , Solanum tuberosum Aegrotans/aislamiento & purificación
14.
Rev Iberoam Micol ; 30(2): 81-7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23036748

RESUMEN

BACKGROUND: Late blight, caused by Phytophthora infestans, is one of the most devastating diseases found in potato and tomato crops worldwide. In Colombia it also attacks other important crops: cape gooseberry and tree tomato. The knowledge of the pathogen population is determinant to effectively design control strategies. AIMS: To determine the physiological and molecular characteristics of a set of Colombian P. infestans isolates. METHODS: Strains isolated from Cundinamarca and Boyacá were examined for the level of resistance to mefenoxam and cymoxanil. Virulence was tested for all strains and crosses between A1 mating type, from different hosts, and the Colombian A2 mating type were tested for the production and viability of oospores in different substrates. Additionally, the molecular diversity of the avirulence gene Avr3a, the ß-tubulin gene, and two single copy genes showing RxLR motif, was assessed. RESULTS: We found all levels of mefenoxam sensitivity, with 48% of the strains resistant. A high diversity of races was detected and the population was genetically clonal. Colombian strains had the possibility of sexual reproduction. CONCLUSIONS: These results will help in optimizing the use of fungicides and deployment of resistance as control strategies and will contribute to broader studies on diversity of this pathogen.


Asunto(s)
Antiinfecciosos/farmacología , Phytophthora infestans , Acetamidas/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Colombia , Secuencia Conservada , Cruzamientos Genéticos , Resistencia a Medicamentos , Variación Genética , Haplotipos/genética , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Phytophthora infestans/efectos de los fármacos , Phytophthora infestans/genética , Phytophthora infestans/aislamiento & purificación , Phytophthora infestans/patogenicidad , Homología de Secuencia de Aminoácido , Solanum tuberosum/parasitología , Especificidad de la Especie , Tubulina (Proteína)/genética , Virulencia , Factores de Virulencia/genética
15.
Rev. iberoam. micol ; 28(4): 166-172, oct.-dic. 2011.
Artículo en Español | IBECS | ID: ibc-91058

RESUMEN

resumen(AU)


Background. Fusarium oxysporum has worldwide distribution and causes severe vascular wilt or root rot in many plants. Strains are classified into formae speciales based on their high degree of host specificity, of which multilocus sequence typing provides a fairly good estimate. Aims. The main aim of this study was to identify the causal agent of an infected potato tuber in Colombia. Methods. Two F. oxysporum isolates were recovered from a potato tuber showing symptoms of dry rot. Both macroscopic and microscopic morphology differences were observed between the two isolates. Koch's postulates were verified and in quantitative tuber pathogenecity trials, both isolates induced moderate dry rot. Ribosomal internal transcribed spacer (ITS) and partial intergenic spacer region (IGS) sequences were PCR-amplified, sequenced and shown to be identical for the two isolates. A maximum parsimony phylogeny was created using F. oxysporum IGS sequences available in the Genebank database, which does not include sequences from the formae speciales tuberosi. Results. Our two isolates were most closely related to a red clover (Trifolium pratense) pathogenic isolate and two non-pathogenic F. oxysporum isolates from birdsfoot trefoil (Lotus corniculatus) and Lycopersicon sp. rhyzosphere (99% identity). Conclusions. These experiments showed that our isolates are not restricted to potato and that a molecular marker is needed to differentiate the formae speciales since the IGS and EF-1alpha do not have the power to do it(AU)


Asunto(s)
Fusarium/aislamiento & purificación , Solanum tuberosum/clasificación , Solanum tuberosum/virología , Filogenia , ADN Espaciador Ribosómico/análisis , ADN Espaciador Ribosómico/aislamiento & purificación , Fusarium/crecimiento & desarrollo , Fusarium/metabolismo , Fusarium/patogenicidad , Microscopía/métodos , Microscopía , Virulencia , Virulencia/fisiología , Factores de Virulencia/aislamiento & purificación
16.
Environ Microbiol ; 13(12): 3172-85, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22050636

RESUMEN

Bacterial wilt (brown rot) disease of potato caused by Ralstonia solanacearum is one of the most important bacterial diseases and a major constraint on potato production worldwide. Through a comparative genomic analysis between R. solanacearum'race 3 biovar 2' (R3bv2) strains, we identified a 77 kb region in strain UW551 which is specifically absent in the hypoaggressive strain IPO1609. We proved that IPO1609 indeed carries a 77 kb genomic deletion and provide genetic evidence that occurrence of this deletion is responsible for almost complete loss of pathogenicity of this strain. We carried out a functional analysis of this 77 kb region in strain UW551 using a combination of gene deletion and functional complementation approaches which identified the methionine biosynthesis genes metER as having a major contribution to IPO1609 pathogenesis. Deletion of the metER genes significantly impacts pathogenicity of R3bv2 strains but does not lead to methionine auxotrophy nor reduced ability to multiply in planta. In addition, this study indicated that three type III secretion system effectors or a type VI secretion system present within the 77 kb region have no or very minor contribution to pathogenicity.


Asunto(s)
Genoma Bacteriano , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/genética , Eliminación de Secuencia , Sistemas de Secreción Bacterianos/genética , Secuencia de Bases , Hibridación Genómica Comparativa , Prueba de Complementación Genética , Genómica , Metionina/biosíntesis , Datos de Secuencia Molecular , Fenotipo , Mapeo Físico de Cromosoma , Plásmidos/genética , Ralstonia solanacearum/patogenicidad , Solanum tuberosum/microbiología
17.
PLoS One ; 6(9): e24543, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21949727

RESUMEN

Emerging plant pathogens have largely been a consequence of the movement of pathogens to new geographic regions. Another documented mechanism for the emergence of plant pathogens is hybridization between individuals of different species or subspecies, which may allow rapid evolution and adaptation to new hosts or environments. Hybrid plant pathogens have traditionally been difficult to detect or confirm, but the increasing ease of cloning and sequencing PCR products now makes the identification of species that consistently have genes or alleles with phylogenetically divergent origins relatively straightforward. We investigated the genetic origin of Phytophthora andina, an increasingly common pathogen of Andean crops Solanum betaceum, S. muricatum, S. quitoense, and several wild Solanum spp. It has been hypothesized that P. andina is a hybrid between the potato late blight pathogen P. infestans and another Phytophthora species. We tested this hypothesis by cloning four nuclear loci to obtain haplotypes and using these loci to infer the phylogenetic relationships of P. andina to P. infestans and other related species. Sequencing of cloned PCR products in every case revealed two distinct haplotypes for each locus in P. andina, such that each isolate had one allele derived from a P. infestans parent and a second divergent allele derived from an unknown species that is closely related but distinct from P. infestans, P. mirabilis, and P. ipomoeae. To the best of our knowledge, the unknown parent has not yet been collected. We also observed sequence polymorphism among P. andina isolates at three of the four loci, many of which segregate between previously described P. andina clonal lineages. These results provide strong support that P. andina emerged via hybridization between P. infestans and another unknown Phytophthora species also belonging to Phytophthora clade 1c.


Asunto(s)
Hibridación Genética , Phytophthora infestans/genética , Solanum tuberosum/microbiología , Inanición/microbiología , Alelos , Evolución Molecular , Sitios Genéticos/genética , Haplotipos/genética , Heterocigoto , Funciones de Verosimilitud , Filogenia , Phytophthora infestans/patogenicidad
18.
Rev Iberoam Micol ; 28(4): 166-72, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21635960

RESUMEN

BACKGROUND: Fusarium oxysporum has worldwide distribution and causes severe vascular wilt or root rot in many plants. Strains are classified into formae speciales based on their high degree of host specificity, of which multilocus sequence typing provides a fairly good estimate. AIMS: The main aim of this study was to identify the causal agent of an infected potato tuber in Colombia. METHODS: Two F. oxysporum isolates were recovered from a potato tuber showing symptoms of dry rot. Both macroscopic and microscopic morphology differences were observed between the two isolates. Koch's postulates were verified and in quantitative tuber pathogenecity trials, both isolates induced moderate dry rot. Ribosomal internal transcribed spacer (ITS) and partial intergenic spacer region (IGS) sequences were PCR-amplified, sequenced and shown to be identical for the two isolates. A maximum parsimony phylogeny was created using F. oxysporum IGS sequences available in the Genebank database, which does not include sequences from the formae speciales tuberosi. RESULTS: Our two isolates were most closely related to a red clover (Trifolium pratense) pathogenic isolate and two non-pathogenic F. oxysporum isolates from birdsfoot trefoil (Lotus corniculatus) and Lycopersicon sp. rhyzosphere (99% identity). CONCLUSIONS: These experiments showed that our isolates are not restricted to potato and that a molecular marker is needed to differentiate the formae speciales since the IGS and EF-1α do not have the power to do it.


Asunto(s)
Fusarium/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Colombia
19.
Brief Bioinform ; 12(2): 151-62, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20353961

RESUMEN

Genome-scale metabolic reconstruction (GEMR), along with flux balance analysis, has been widely used to study complex metabolic networks in several microbial organisms. This approach is of particular applicability in biological systems where the lack of kinetics data is typical. This is the case of plant-pathogen interactions, where these methods open the possibility of studying host metabolic network phenotype during the interaction with pathogens. Since GEMRs are based on sequenced genomes, its applicability to organisms where genomic information is lacking is limited. Here we describe an alternative approach to GEMR: targeted metabolic reconstruction, where network reconstruction is guided by transcriptomic data instead of genomic information. This approach is being applied successfully in our laboratory for the Phytophthora infestans--Solanum tuberosum pathosystem.


Asunto(s)
Biología Computacional/métodos , Redes y Vías Metabólicas , Phytophthora infestans/patogenicidad , Solanum tuberosum/parasitología , Genoma , Interacciones Huésped-Parásitos , Enfermedades de las Plantas/parasitología
20.
Theor Biol Med Model ; 6: 24, 2009 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-19909526

RESUMEN

BACKGROUND: Phytophthora infestans is a devastating oomycete pathogen of potato production worldwide. This review explores the use of computational models for studying the molecular interactions between P. infestans and one of its hosts, Solanum tuberosum. MODELING AND CONCLUSION: Deterministic logistics models have been widely used to study pathogenicity mechanisms since the early 1950s, and have focused on processes at higher biological resolution levels. In recent years, owing to the availability of high throughput biological data and computational resources, interest in stochastic modeling of plant-pathogen interactions has grown. Stochastic models better reflect the behavior of biological systems. Most modern approaches to plant pathology modeling require molecular kinetics information. Unfortunately, this information is not available for many plant pathogens, including P. infestans. Boolean formalism has compensated for the lack of kinetics; this is especially the case where comparative genomics, protein-protein interactions and differential gene expression are the most common data resources.


Asunto(s)
Phytophthora infestans/metabolismo , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genómica , Cinética , Modelos Teóricos , Mapeo de Interacción de Proteínas , Transducción de Señal , Programas Informáticos , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA