Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 415(2): 255-268, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36136113

RESUMEN

The potential of enriched Pb (204Pb) was assessed to monitor pathways of trace levels of Pb in the pg range within the human body via isotope pattern variation in situations where natural lead cannot be used as a tracer due to regulatory limitations. Isotope ratio measurements were accomplished by means of (multi-collector) inductively coupled plasma mass spectrometry including a comparison of single and multi-collector ICP-MS for low-level 204Pb assessment. Isotopic pattern results from a blend of a large quantity of the element with a natural isotopic composition and an enriched stable isotope at orders of magnitude lower levels pose a nontrivial analytical problem. Isotope pattern deconvolution was successfully applied as mathematical tool based on multiple linear regressions. The method allowed for deconvolving the isotope pattern from measured isotope ratios without knowing the quantities of different isotope sources incorporated and mixed into the sample at levels of < 1 pg 204Pb/g blood. The objective of this manuscript is to evaluate and summarize the analytical aspects for Pb isotope pattern deconvolution based on the results of a clinical trial, where a 204Pb-enriched isotope tracer was applied to investigate the bioavailability of orally applied Pb along with purified clinoptilolite tuff as potential supplement. This unique approach allows to reduce tracer amounts to harmless levels to human health, which are in accordance with the legal regulative to study enrichment levels of < 0.01% in human blood.


Asunto(s)
Isótopos , Plomo , Humanos , Espectrometría de Masas/métodos , Isótopos/análisis , Disponibilidad Biológica , Suplementos Dietéticos/análisis
2.
Anal Bioanal Chem ; 411(3): 565-580, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30511253

RESUMEN

This paper presents a combination of elemental and isotopic spatial distribution imaging with near-infrared hyperspectral imaging (NIR-HSI) to evaluate the diagenetic status of skeletal remains. The aim is to assess how areas with biogenic n(87Sr)/n(86Sr) isotope-amount ratios may be identified in bone material, an important recorder complementary to teeth. Elemental (C, P, Ca, Sr) and isotopic (n(87Sr)/n(86Sr)) imaging were accomplished via laser ablation (LA) coupled in a split stream to a quadrupole inductively coupled plasma mass spectrometer (ICP-QMS) and a multicollector inductively coupled plasma mass spectrometer (MC ICP-MS) (abbreviation for the combined method LASS ICP-QMS/MC ICP-MS). Biogenic areas on the bone cross section, which remained unaltered by diagenetic processes, were localized using chemical indicators (I(C)/I(Ca) and I(C) × 10/I(P) intensity ratios) and NIR-HSI at a wavelength of 1410 nm to identify preserved collagen. The n(87Sr)/n(86Sr) isotope signature analyzed in these areas was in agreement with the biogenic bulk signal revealed by solubility profiling used as an independent method for validation. Elevated C intensities in the outer rim of the bone, caused by either precipitated secondary minerals or adsorbed humic materials, could be identified as indication for diagenetic alteration. These areas also show a different n(87Sr)/n(86Sr) isotopic composition. Therefore, the combination of NIR-HSI and LASS ICP-QMS/MC ICP-MS allows for the determination of preserved biogenic n(87Sr)/n(86Sr) isotope-amount ratios, if the original biogenic material has not been entirely replaced by diagenetic material. Graphical abstract ᅟ.


Asunto(s)
Huesos/química , Rayos Láser , Espectrometría de Masas/métodos , Imagen Molecular/métodos , Espectroscopía Infrarroja Corta/métodos , Isótopos de Estroncio/química , Animales , Humanos , Sustancias Húmicas/análisis , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA