Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 450: 116154, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35798068

RESUMEN

Workers involved in oil exploration and production in the upstream petroleum industry are exposed to crude oil vapor (COV). COV levels in the proximity of workers during production tank gauging and opening of thief hatches can exceed regulatory standards, and several deaths have occurred after opening thief hatches. There is a paucity of information regarding the effects of COV inhalation in the lung. To address these knowledge gaps, the present hazard identification study was undertaken to investigate the effects of an acute, single inhalation exposure (6 h) or a 28 d sub-chronic exposure (6 h/d × 4 d/wk × 4 wks) to COV (300 ppm; Macondo well surrogate oil) on ventilatory and non-ventilatory functions of the lung in a rat model 1 and 28 d after acute exposure, and 1, 28 and 90 d following sub-chronic exposure. Basal airway resistance was increased 90 d post-sub-chronic exposure, but reactivity to methacholine (MCh) was unaffected. In the isolated, perfused trachea preparation the inhibitory effect of the airway epithelium on reactivity to MCh was increased at 90 d post-exposure. Efferent cholinergic nerve activity regulating airway smooth muscle was unaffected by COV exposure. Acute exposure did not affect basal airway epithelial ion transport, but 28 d after sub-chronic exposure alterations in active (Na+ and Cl¯) and passive ion transport occurred. COV treatment did not affect lung vascular permeability. The findings indicate that acute and sub-chronic COV inhalation does not appreciably affect ventilatory properties of the rat, but transient changes in airway epithelium occur.


Asunto(s)
Petróleo , Resistencia de las Vías Respiratorias , Animales , Exposición por Inhalación/efectos adversos , Pulmón , Cloruro de Metacolina/farmacología , Petróleo/toxicidad , Ratas
2.
J Appl Physiol (1985) ; 105(2): 711-7, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18450981

RESUMEN

An acoustic whole body plethysmograph was developed to estimate specific airway resistance (sRaw) in unrestrained mice. The plethysmograph uses acoustic principles to measure the thoracic breathing pattern and simultaneously measures the airflow entering and/or leaving the plethysmograph. Similarly to traditional methods utilizing a double-chamber plethysmograph, these measurements were combined to estimate sRaw. To evaluate the new system, we placed six conscious A/J mice individually in a whole body plethysmograph (Buxco System) for a 2-min exposure to aerosolized methacholine chloride dissolved in saline (0, 5, 10, and 20 mg/ml), which is known to increase sRaw in mice. Three minutes after exposure, the mice were transferred to the acoustic plethysmograph for 2 min for data collection. The mean baseline value of sRaw was 0.93+/-0.10 cmH2O.s. A dose-dependent increase in sRaw was shown, with an approximate tripling of sRaw at the highest dose. These results demonstrate the ability of the system to estimate sRaw based on plethysmograph airflow and acoustic amplitude.


Asunto(s)
Resistencia de las Vías Respiratorias/fisiología , Pletismografía/métodos , Estimulación Acústica , Animales , Electrónica , Ratones , Pletismografía Total , Mecánica Respiratoria
3.
Toxicology ; 177(2-3): 285-97, 2002 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12135630

RESUMEN

Metal working fluids (MWFs) have been widely known to cause asthma and neoplasia of the larynx, pancreas, rectum, skin and urinary bladder (Textbook of Clinical Occupational and Environmental Medicine (1994) 814; Am. J. Ind. Med. 32 (1997) 240; Am. J. Ind. Med. 33 (1997) 282; Am. J. Ind. Med. 22 (1994) 185). Other non-neoplastic respiratory effects in industrial workers attributed to MWFs include increased rates of cough, phlegm production, wheeze, chronic bronchitis and chest tightness (Eur. J. Resir. Dis. 63(118) (1982), 79; J. Occup. Med. 24 (1982) 473; Am. J. Ind. Med. 32 (1997) 450). The epidemic and endemic nature of immune mediated lung morbidity commonly known as hypersensitivity pneumonitis in workers from several different industries using MWFs has been well documented (J. Allergy clin. Immunol. 91 (1993) 311; Chest 108 (1995) 636; MMWR45 (1996) 606; Am. J. Ind. Med. 32 (1997) 423). We studied morphological/functional and antioxidant outcomes in lungs after inhalation exposure of vitamin E deficient mice to MWF (27 mg m(-3) 17 weeks, 5 days a week, 6 h a day). Mice were given vitamin E deficient (<10 IU kg(-1) vitamin E) or basal diets (50 IU kg(-1) vitamin E) for 35 weeks. Inhalation exposure to MWF started after 18 weeks on diet. Microscopic observation of lungs from mice given vitamin E deficient or sufficient diets revealed no inflammation or morphological alteration after exposure to MWF. Mice given vitamin E deficient diet exhibited a significant decrease (P<0.05) in breathing rate, peak inspiratory/expiratory flow, minute ventilation, and tidal volume compared with sufficient controls. However, no differences were found after exposure to MWF in pulmonary function, with the exception of tidal volume which also significantly decreased (P<0.05). Exposure to MWF reduced vitamin E, protein thiol and ascorbate level in lungs. Exposure to MWF in combination with a vitamin E deficient diet resulted in significantly enhanced accumulation of peroxidative products compared with vitamin E deficient controls. This is the first report that describes the increase of oxidative stress in the lungs after MWF exposure.


Asunto(s)
Aceites Industriales/toxicidad , Pulmón/efectos de los fármacos , Deficiencia de Vitamina E/fisiopatología , Vitamina E/farmacología , Animales , Glutatión/análisis , Peroxidación de Lípido/efectos de los fármacos , Pulmón/fisiología , Masculino , Metalurgia , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA