Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Agric Food Chem ; 70(12): 3644-3653, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35289164

RESUMEN

The encapsulation of bioactive natural products has emerged as a relevant tool for modifying the poor physicochemical properties often exhibited by agrochemicals. In this regard, natural guaiane-type sesquiterpene lactones isolated from Cynara cardunculus L. have been encapsulated in a core/shell nanotube@agrochemical system. Monitoring of the F and O signals in marked sesquiterpenes confirmed that the compound is present in the nanotube cavity. These structures were characterized using scanning transmission electron microscopy-X-ray energy-dispersive spectrometry techniques, which revealed the spatial layout relationship and confirmed encapsulation of the sesquiterpene lactone derivative. In addition, biological studies were performed with aguerin B (1), cynaropicrin (2), and grosheimin (3) on the inhibition of germination, roots, and shoots in weeds (Phalaris arundinacea L., Lolium perenne L., and Portulaca oleracea L.). Encapsulation of lactones in nanotubes gives better results than those for the nonencapsulated compounds, thereby reinforcing the application of fully organic nanotubes for the sustainable use of agrochemicals in the future.


Asunto(s)
Cynara , Nanotubos , Cynara/química , Lactonas/química , Lactonas/toxicidad , Extractos Vegetales/química , Extractos Vegetales/farmacología , Sesquiterpenos de Guayano
2.
Plant Cell Environ ; 45(2): 512-527, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34719040

RESUMEN

Nitrogen (N) and phosphorus (P) are among the most important macronutrients for plant growth and development, and the most widely used as fertilizers. Understanding how plants sense and respond to N and P deficiency is essential to optimize and reduce the use of chemical fertilizers. Strigolactones (SLs) are phytohormones acting as modulators and sensors of plant responses to P deficiency. In the present work, we assess the potential role of SLs in N starvation and in the N-P signalling interplay. Physiological, transcriptional and metabolic responses were analysed in wild-type and SL-deficient tomato plants grown under different P and N regimes, and in plants treated with a short-term pulse of the synthetic SL analogue 2'-epi-GR24. The results evidence that plants prioritize N over P status by affecting SL biosynthesis. We also show that SLs modulate the expression of key regulatory genes of phosphate and nitrate signalling pathways, including the N-P integrators PHO2 and NIGT1/HHO. The results support a key role for SLs as sensors during early plant responses to both N and phosphate starvation and mediating the N-P signalling interplay, indicating that SLs are involved in more physiological processes than so far proposed.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos/metabolismo , Lactonas/metabolismo , Nitrógeno/fisiología , Fósforo/fisiología , Transducción de Señal , Solanum lycopersicum/fisiología
3.
J Agric Food Chem ; 69(31): 8684-8694, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34328733

RESUMEN

Piptocarpha rotundifolia (Less.) Baker stands out as one of the species with the highest frequency, density, and relative dominance in the Cerrado formations. However, no phytochemical studies have been carried out with this species to date. The aim of this study was to evaluate the phytotoxic activity of P. rotundifolia leaves in the search of new environmentally friendly tools for weed control. Thus, a wheat coleoptile and phytotoxic bioassay, using relevant agricultural weeds, was used to identify the most active extracts and fractions. The subsequent purification process allowed the isolation of 11 compounds, the phytotoxicity of which was evaluated in terms of wheat coleoptile elongation and with the most sensitive weeds. Piptocarphin A was found to be the major compound and the most active. To confirm its phytotoxic potential, the effect on Ipomea grandifolia grown in a hydroponic culture and on metaxylem cells was studied. The results obtained in this study demonstrate that the inhibitory activity displayed by P. rotundifolia leaf extract is mainly due to the presence of piptocarphin A. The phytotoxicity shown by P. rotundifolia leaf extract, and the isolated compounds, on weeds could provide new tools for weed control in agricultural fields.


Asunto(s)
Asteraceae , Control de Malezas , Fitoquímicos , Extractos Vegetales/toxicidad , Malezas
4.
J Agric Food Chem ; 68(43): 11946-11953, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33052675

RESUMEN

The work described here follows on from a previous study focused on the influence of the genotype and harvest time on the sesquiterpene lactone (STL) profile of Cynara cardunculus L. leaf extracts. The aim of this study was to investigate the effect that 60% plant shading in cultivated cardoon (C. cardunculus var. altilis) leaf extracts harvested in winter and spring had on the composition of STLs and the phytotoxicity. The phytotoxicity of leaf extracts was evaluated by assessing wheat coleoptile elongation along with seed germination and the root and shoot length of the weeds Amaranthus retroflexus L. and Portulaca oleracea L. Shading increased the production of STLs in spring, and this effect correlated positively with the phytotoxic activity. The induction of shading can therefore be used to modulate STL concentrations and their phytotoxic potential in cultivated cardoon leaves for industrial applications.


Asunto(s)
Cynara/química , Cynara/efectos de la radiación , Herbicidas/análisis , Lactonas/química , Extractos Vegetales/química , Producción de Cultivos , Cynara/metabolismo , Herbicidas/metabolismo , Herbicidas/farmacología , Lactonas/metabolismo , Lactonas/farmacología , Luz , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Malezas/efectos de los fármacos , Malezas/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Triticum/efectos de los fármacos , Triticum/crecimiento & desarrollo
5.
J Chem Ecol ; 46(9): 871-880, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32691372

RESUMEN

Weeds have been a major threat in agriculture for several generations as they lead to decreases in productivity and cause significant economic losses. Parasitic plants are a specific type of weed causing losses in crops of great relevance. A new strategy has emerged in the fight against parasitic plants, which is called 'suicidal germination' or the 'honey-pot strategy'. Regarding the problem of weed control from an ecological point of view, it is interesting to investigate new natural compounds with allelopathic activity with the aim of developing new natural herbicides that can inhibit the growth of weeds without damaging the environment. Safflower crops have been affected by parasitic plants and weeds and, as a consequence, the secondary metabolites exuded by safflower roots have been studied. The sesquiterpene lactone dehydrocostuslactone was isolated and characterised, and the structurally related costunolide was identified by UHPLC-MS/MS in safflower root exudates. These sesquiterpene lactones have been shown to stimulate germination of Phelipanche ramosa and Orobanche cumana seeds. In addition, these compounds were phytotoxic on three important weeds in agriculture, namely Lolium perenne, Lolium rigidum and Echinochloa crus-galli. The exudation of the strigolactones solanacol and fabacyl acetate have also been confirmed by UHPLC-MS/MS. The study reported here contributes to our knowledge of the ecological role played by some secondary metabolites. Moreover, this knowledge could help identify new models for the development of future agrochemicals based on natural products.


Asunto(s)
Carthamus tinctorius/parasitología , Germinación/efectos de los fármacos , Raíces de Plantas/parasitología , Malezas/efectos de los fármacos , Control de Malezas/métodos , Alelopatía , Cromatografía Liquida , Lactonas/aislamiento & purificación , Lactonas/farmacología , Lolium/efectos de los fármacos , Lolium/crecimiento & desarrollo , Orobanche/efectos de los fármacos , Orobanche/crecimiento & desarrollo , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Exudados de Plantas/aislamiento & purificación , Exudados de Plantas/farmacología , Raíces de Plantas/química , Semillas/efectos de los fármacos , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacología , Espectrometría de Masas en Tándem
6.
Methods Mol Biol ; 2083: 199-208, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31745923

RESUMEN

Strigolactones (SLs) are a family of natural products produced by the plants as shoot branching factors and responsible for the induction of hyphal branching in arbuscular mycorrhizal (AM) fungi. They have been also used by parasitic plant seeds as stimulators of their germination as a strategy to ensure the presence of a host in the environment. For all these bioactivities, SLs have kept the attention of the researchers in the last years, increasing the number of published papers, and have opened new areas of research in the multiple roles that they play in the rhizosphere and as plant hormones. However, the low amount of them produced by plants and their rapid degradability make it crucial to develop fast analytical methods with very low limits of quantification. Herein, it is described a protocol for the development of an LC-MS/MS method for the quantification of SLs, using GR24 as IS, in roots exudates and extracts.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos/análisis , Lactonas/análisis , Fraccionamiento Químico , Cromatografía Liquida , Compuestos Heterocíclicos con 3 Anillos/química , Compuestos Heterocíclicos con 3 Anillos/aislamiento & purificación , Lactonas/química , Lactonas/aislamiento & purificación , Estructura Molecular , Extractos Vegetales/química , Raíces de Plantas/química , Plantas/química , Espectrometría de Masas en Tándem
7.
J Agric Food Chem ; 67(38): 10764-10773, 2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31487158

RESUMEN

It has been hypothesized that the α-methylene-γ-lactone moiety of sesquiterpene lactones is a key unit for their bioactivity. As a consequence, modifications of these compounds have been focused on this fragment. In the work reported here, two sesquiterpene lactones, namely, dehydrocostuslactone and ß-cyclocostunolide, a eudesmanolide obtained by controlled cyclization of costunolide, were chosen for modification by Michael addition at C-13. On applying this reaction to both compounds, it was possible to introduce the functional groups alkoxy, amino, carbamoyl, hydroxy, and thiol to give products in good to high yields, depending on the base and solvent employed. In particular, the introduction of a thiol group at C-13 in both compounds was achieved with outstanding yields (>90%) and this is unprecedented for these sesquiterpene lactones. The bioactivities of the products were evaluated on etiolated wheat coleoptile elongation and germination of seeds of parasitic weeds, with significant activity observed on Orobanche cumana and Phelipanche ramosa. The structure-activity relationships are discussed.


Asunto(s)
Lactonas/química , Orobanchaceae/química , Orobanche/química , Extractos Vegetales/química , Malezas/química , Sesquiterpenos/química , Germinación , Estructura Molecular , Orobanchaceae/crecimiento & desarrollo , Orobanche/crecimiento & desarrollo , Malezas/crecimiento & desarrollo , Semillas/química , Semillas/crecimiento & desarrollo , Compuestos de Sulfhidrilo/química
8.
J Agric Food Chem ; 67(23): 6487-6496, 2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31094509

RESUMEN

The excessive and inappropriate application of herbicides has caused environmental pollution. The use of allelochemicals as bioherbicides could provide a solution to this problem. The allelopathic activity of Cynara cardunculus L. has been studied previously, and sesquiterpene lactones (STLs) were identified as the most relevant allelochemicals. The goal of the study reported here was to investigate the effect of six genotypes and three harvest times on the qualitative and quantitative composition of STLs in C. cardunculus leaves through a new ultra-high-performance liquid chromatography-tandem mass spectrometry analysis method and, thus, the effect on phytotoxicity. Overall, wild cardoon contained the highest levels of STLs of the three botanical varieties studied. Nevertheless, climatic conditions had a marked influence on the presence of STLs among the six genotypes, which was higher in the April harvest. Cynaropicrin was the most abundant STL detected. A close relationship was found between the STL profiles and the allelopathic activity, expressed as inhibition of wheat coleoptile elongation. The data provide a new and important contribution to our understanding of C. cardunculus allelopathy.


Asunto(s)
Cynara/crecimiento & desarrollo , Cynara/genética , Lactonas/química , Extractos Vegetales/química , Sesquiterpenos/química , Cromatografía Líquida de Alta Presión , Cynara/química , Cynara/metabolismo , Genotipo , Lactonas/metabolismo , Espectrometría de Masas , Feromonas/química , Feromonas/metabolismo , Extractos Vegetales/metabolismo , Hojas de la Planta/química , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Sesquiterpenos/metabolismo , Factores de Tiempo
9.
Molecules ; 24(4)2019 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-30791447

RESUMEN

A bio-guided study of leaf extracts allowed the isolation of two new macrobicyclic hydrolysable tannins, namely merianin A (1) and merianin B (2), and oct-1-en-3-yl ß-xylopyranosyl-(1"-6')-ß-glucopyranoside (3) from Meriania hernandoi, in addition to 11 known compounds reported for the first time in the Meriania genus. The structures were elucidated by spectroscopic analyses including one- and two-dimensional NMR techniques and mass spectrometry. The bioactivities of the compounds were determined by measuring the DPPH radical scavenging activity and by carrying out antioxidant power assays (FRAP), etiolated wheat coleoptile assays and phytotoxicity assays on the standard target species Lycopersicum esculentum W. (tomato). Compounds 1 and 2 exhibited the best free radical scavenging activities, with FRS50 values of 2.0 and 1.9 µM, respectively.


Asunto(s)
Taninos Hidrolizables/química , Taninos Hidrolizables/farmacología , Melastomataceae/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Espectroscopía de Resonancia Magnética , Estructura Molecular , Fitoquímicos/química , Fitoquímicos/farmacología , Relación Estructura-Actividad
10.
Phytochem Anal ; 30(1): 110-116, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30280444

RESUMEN

INTRODUCTION: Strigolactones (SLs) are the most representative germination stimulants for seeds of root parasitic plants, and they show activity even at concentrations below 10-10  M. The low amounts of stimulants produced by the host and their rapid degradability make it crucial to develop analytical methods with very low limits of quantification. OBJECTIVE: To develop a sensitive and validated analytical method for the simultaneous quantification of seven SLs [7-oxoorobanchyl acetate (1), solanacol (2), orobanchol (4), strigol (5), fabacyl acetate (6), orobanchyl acetate (7), and 5-deoxystrigol (8)]. METHODS: SLs were analysed using ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS), with (±)-GR24 (3) employed as internal standard (IS). Validation was based on selectivity, linearity, precision of the peak areas (repeatability and intermediate precision), detection and quantification limits, and stability. RESULTS: A simple, rapid and reliable UHPLC-MS/MS method has been validated for the routine analysis of seven SLs and has been successfully applied to quantify them in exudates and extracts from tomato roots (Solanum lycopersicum). The limits of quantifications range from 0.05 µg/L for 5-deoxystrigol to 0.96 µg/L for solanacol. CONCLUSION: The method provides a useful tool for research in all the fields related to SLs, both for studies related to their function as hormones, and signalling molecules in the rhizosphere, without sample preparation required for extracts and root exudates in less than 11 minutes.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Lactonas/análisis , Extractos Vegetales/química , Raíces de Plantas/química , Solanum lycopersicum/química , Espectrometría de Masas en Tándem/métodos , Límite de Detección
11.
Phytochemistry ; 141: 162-170, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28633108

RESUMEN

Isohexenylnaphthazarins are commonly found in the root periderm of several Boraginaceous plants and are known for their broad range of biological activities. The work described herein concerns the biological activity of compounds from the roots of Echium plantagineum L. and Echium gaditanum Boiss (Boraginaceae) collected from field sites in southern Spain and Australia. Bioactivity was assessed using etiolated wheat coleoptile bioassay and in vitro growth inhibitory activity in HeLa and IGROV-1 cells. The quantification of four isohexenylnaphthazarins (shikonin/alkannin, deoxyshikonin/deoxyalkannin, acetylshikonin/acetylalkannin and dimethylacrylshikonin/dimethylacrylalkannin) was performed by LC-MS/MS using juglone as internal standard. Correlation coefficient values for the activities and concentrations of these four analytes were in the linear range and were greater than 0.99. Acetylshikonin/acetylalkannin and dimethylacrylshikonin/dimethylacrylalkannin were present in the highest concentrations in extracts of both species. The results reveal that greatest overall inhibition was observed in both bioassays with E. gaditanum extracts. Strong correlations between time of collection, sampling location and bioactivity were identified.


Asunto(s)
Echium/química , Naftoquinonas/química , Raíces de Plantas/química , Australia , Línea Celular Tumoral , Supervivencia Celular , Echium/clasificación , Humanos , Naftoquinonas/aislamiento & purificación , Extractos Vegetales/química , España , Triticum/efectos de los fármacos
12.
J Agric Food Chem ; 64(33): 6416-24, 2016 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-27487046

RESUMEN

The work described herein is a continuation of a previous study centered on the bioprospect of cardoon (Cynara cardunculus) leaf extracts through the isolation of secondary metabolites with phytotoxic activity. Chromatographic fractionations of the ethyl acetate extract and spectroscopic analysis showed that the majority of the components were sesquiterpene lactones. Of these compounds, aguerin B, grosheimin, and cynaropicrin were very active on etiolated wheat coleoptile, standard target species, and weed growth. The joint action of binary mixtures of these three active sesquiterpene lactones and one nonactive compound (11,13-dihydroxy-8-desoxygrosheimin) was studied. The activities of fixed-ratio mixtures were assessed on wheat coleoptile. The results can be interpreted with respect to a reference model by considering dose-response analyses and isobolograms with linear regression analyses. A total of 17 binary mixtures at different levels of inhibition (ED25, ED50, and ED75) were studied, and predominantly they responded additively (25). Deviations from additivity included seven synergistic responses and two antagonistic responses. The joint action of major sesquiterpene lactones isolated from C. cardunculus can explain the activities observed in extracts and fractions. The results reported here reiterate the utility of the wheat coleoptile bioassay as a quick tool to detect potential synergistic effects in binary mixtures.


Asunto(s)
Cynara/química , Lactonas/química , Extractos Vegetales , Sesquiterpenos/química , Cotiledón/efectos de los fármacos , Estructura Molecular , Extractos Vegetales/química , Hojas de la Planta/química , Triticum/efectos de los fármacos
13.
J Agric Food Chem ; 62(28): 6699-706, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-24974850

RESUMEN

Cardoon (Cynara cardunculus L.) is a native plant to the Iberian Peninsula and the European Atlantic coast and invasive in American environments. Different solvents were used to perform cardoon extracts that were tested in phytotoxic bioassays. The ethyl acetate extract had the highest inhibitory activity so this was tested on the germination and growth of standard target species (lettuce, watercress, tomato, and onion) and weeds (barnyardgrass and brachiaria). The ethyl acetate extract was very active on root growth in both standard target species and weeds and it was therefore fractionated by chromatography. The spectroscopic data showed that the major compounds were sesquiterpene lactones. Aguerin B, grosheimin, and cynaropicrin were very active on etiolated wheat coleoptile, standard target species, and weed growth. The presence of these compounds explains the bioactivity of the ethyl acetate extract. The strong phytotoxicity of these compounds on important weeds shows the potential of these compounds as natural herbicide models.


Asunto(s)
Cynara/química , Herbicidas/farmacología , Feromonas/farmacología , Extractos Vegetales/farmacología , Lepidium/efectos de los fármacos , Lactuca/efectos de los fármacos , Solanum lycopersicum/efectos de los fármacos , Cebollas/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Malezas/efectos de los fármacos , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA