Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Regul Integr Comp Physiol ; 320(6): R824-R832, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33789445

RESUMEN

To examine the role of chronic (in)activity on muscle carnosine (MCarn) and how chronic (in)activity affects MCarn responses to ß-alanine supplementation in spinal cord-injured athletes, 16 male athletes with paraplegia were randomized (2:1 ratio) to receive ß-alanine (n = 11) or placebo (PL, n = 5). They consumed 6.4 g/day of ß-alanine or PL for 28 days. Muscle biopsies of the active deltoid and the inactive vastus lateralis (VL) were taken before and after supplementation. MCarn in the VL was also compared with the VL of a group of individuals without paraplegia (n = 15). MCarn was quantified in whole muscle and in pools of individual fibers by high-performance liquid chromatography. MCarn was higher in chronically inactive VL vs. well-trained deltoid (32.0 ± 12.0 vs. 20.5 ± 6.1 mmol/kg DM; P = 0.018). MCarn was higher in inactive vs. active VL (32.0 ± 12.0 vs. 21.2 ± 7.5 mmol/kg DM; P = 0.011). In type-I fibers, MCarn was significantly higher in the inactive VL than in the active deltoid (38.3 ± 4.7 vs. 27.3 ± 11.8 mmol/kg DM, P = 0.014). MCarn increased similarly between inactive VL and active deltoid in the ß-alanine group (VL: 68.9 ± 55.1%, P = 0.0002; deltoid: 90.5 ± 51.4%, P < 0.0001), with no changes in the PL group. MCarn content was higher in the inactive VL than in the active deltoid and the active VL, but this is probably a consequence of fiber type shift (type I to type II) that occurs with chronic inactivity. Chronically inactive muscle showed an increase in MCarn after BA supplementation equally to the active muscle, suggesting that carnosine accretion following ß-alanine supplementation is not influenced by muscle inactivity.


Asunto(s)
Carnosina/metabolismo , Homeostasis/fisiología , Músculo Esquelético/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Médula Espinal/fisiopatología , Atletas , Suplementos Dietéticos , Humanos , Médula Espinal/efectos de los fármacos , beta-Alanina/administración & dosificación , beta-Alanina/farmacología
2.
Med Sci Sports Exerc ; 53(5): 1079-1088, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33148972

RESUMEN

PURPOSE: This study aimed to describe the kinetics of carnosine washout in human skeletal muscle over 16 wk. METHODS: Carnosine washout kinetics were studied in 15 young, physically active omnivorous men randomly assigned to take 6.4 g·d-1 of ß-alanine (n = 11) or placebo (n = 4) for 8 wk. Muscle carnosine content (M-Carn) was determined before (PRE), immediately after (POST), and 4, 8, 12, and 16 wk after supplementation. High-intensity exercise tests were performed at these same time points. Linear and exponential models were fitted to the washout data, and the leave-one-out method was used to select the model with the best fit for M-Carn decay data. Repeated-measures correlation analysis was used to assess the association between changes in M-Carn and changes in performance. RESULTS: M-Carn increased from PRE to POST in the ß-alanine group only (+91.1% ± 29.1%; placebo, +0.04% ± 10.1%; P < 0.0001). M-Carn started to decrease after cessation of ß-alanine supplementation and continued to decrease until week 16 (POST4, +59% ± 40%; POST8, +35% ± 39%; POST12, +18% ± 32%; POST16, -3% ± 24% of PRE M-Carn). From week 12 onward, M-Carn was no longer statistically different from PRE. Both linear and exponential models displayed very similar fit and could be used to describe carnosine washout, although the linear model presented a slightly better fit. The decay in M-Carn was mirrored by a similar decay in high-intensity exercise tolerance; M-Carn was moderately and significantly correlated with total mechanical work done (r = 0.505; P = 0.032) and time to exhaustion (r = 0.72; P < 0.001). CONCLUSIONS: Carnosine washout takes 12-16 wk to complete, and it can be described either by linear or exponential curves. Changes in M-Carn seem to be mirrored by changes in high-intensity exercise tolerance. This information can be used to optimize ß-alanine supplementation strategies.


Asunto(s)
Carnosina/metabolismo , Tolerancia al Ejercicio/fisiología , Ejercicio Físico/fisiología , Músculo Esquelético/metabolismo , beta-Alanina/administración & dosificación , Adulto , Suplementos Dietéticos , Prueba de Esfuerzo , Humanos , Modelos Lineales , Masculino , Factores de Tiempo , Adulto Joven
3.
Am J Physiol Cell Physiol ; 318(4): C777-C786, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32101455

RESUMEN

To test whether high circulating insulin concentrations influence the transport of ß-alanine into skeletal muscle at either saturating or subsaturating ß-alanine concentrations, we conducted two experiments whereby ß-alanine and insulin concentrations were controlled. In experiment 1, 12 men received supraphysiological amounts of ß-alanine intravenously (0.11 g·kg-1·min-1 for 150 min), with or without insulin infusion. ß-Alanine and carnosine were measured in muscle before and 30 min after infusion. Blood samples were taken throughout the infusion protocol for plasma insulin and ß-alanine analyses. ß-Alanine content in 24-h urine was assessed. In experiment 2, six men ingested typical doses of ß-alanine (10 mg/kg) before insulin infusion or no infusion. ß-Alanine was assessed in muscle before and 120 min following ingestion. In experiment 1, no differences between conditions were shown for plasma ß-alanine, muscle ß-alanine, muscle carnosine and urinary ß-alanine concentrations (all P > 0.05). In experiment 2, no differences between conditions were shown for plasma ß-alanine or muscle ß-alanine concentrations (all P > 0.05). Hyperinsulinemia did not increase ß-alanine uptake by skeletal muscle cells, neither when substrate concentrations exceed the Vmax of ß-alanine transporter TauT nor when it was below saturation. These results suggest that increasing insulin concentration is not necessary to maximize ß-alanine transport into muscle following ß-alanine intake.


Asunto(s)
Transporte Biológico/fisiología , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Carnosina/metabolismo , Suplementos Dietéticos , Humanos , Masculino , Taurina/metabolismo , beta-Alanina/administración & dosificación , beta-Alanina/sangre , beta-Alanina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA