Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Toxicol Environ Health B Crit Rev ; 25(4): 162-209, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35676826

RESUMEN

Studies of nervous system effects of glyphosate, a widely used herbicide, have not been critically examined. The aim of this paper was to systematically review glyphosate-induced neurotoxicity literature to determine its usefulness in regulatory decision-making. The review was restricted to mammalian studies of behavior, neuropathology, and neuropharmacology; in vitro and other biochemical studies were considered supplementary information. Glyphosate formulation studies were also considered, despite uncertainties regarding toxicities of the formulated products; no studies used a formulation vehicle as the control. Inclusion criteria were developed a priori to ensure consistent evaluation of studies, and in vivo investigations were also ranked using ToxRTool software to determine reliability. There were 27 in vivo studies (open literature and available regulatory reports), but 11 studies were considered unreliable (mostly due to critical methodological deficiencies). There were only seven acceptable investigations on glyphosate alone. Studies differed in terms of dosing scenarios, experimental designs, test species, and commercial product. Limitations included using only one dose and/or one test time, small sample sizes, limited data presentation, and/or overtly toxic doses. While motor activity was the most consistently affected endpoint (10 of 12 studies), there were considerable differences in outcomes. In six investigations, there were no marked neuropathological changes in the central or peripheral nervous system. Other neurological effects were less consistent, and some outcomes were less convincing due to influences including high variability and small effect sizes. Taken together, these studies do not demonstrate a consistent impact of glyphosate on the structure or function of the mammalian nervous system.


Asunto(s)
Glicina , Herbicidas , Animales , Glicina/análogos & derivados , Glicina/toxicidad , Herbicidas/toxicidad , Mamíferos , Reproducibilidad de los Resultados , Glifosato
2.
J Pharm Sci ; 110(12): 3794-3802, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34390741

RESUMEN

Battery-powered drug delivery devices are widely used as primary containers for storing and delivering therapeutic protein products to improve patient compliance and quality of life. Compared to conventional delivery approaches such as pre-filled syringes, battery-powered devices are more complex in design requiring new materials/components for proper functionality, which could cause potential product safety and quality concerns from the extractable and leachables (E&L) of the new materials/components. In this study, E&L assessments were performed on a battery-powered delivery device during the development and qualification of the device, where novel compound 2­hydroxy-2-methylpropiophenone (HMPP) and related compounds were observed in both E&L. The source of the HMPP and related compounds was identified to be the nonproduct contact device batteries, in which HMPP photo-initiator was used as a curing agent in the battery sealant to prevent leakage of the battery electrolytes. Toxicology assessment was performed, which showed the levels of HMPP observed in the device lots were acceptable relative to the permitted daily exposure. A drug product HMPP spike study was also performed, where no product impact was observed. Based on these assessments, an action threshold and specification limits could be established as a control strategy, if needed, to mitigate the potential risks associate with the observed leachables. As a full resolution, seven battery candidates from different suppliers were screened and one new battery was successfully qualified for the delivery devices. Overall, the holistic E&L approach was fully successful in the development and qualification of the battery-powered devices for biotherapeutic products delivery ensuring product quality and patient safety. Non-product contact materials are commonly rated as low or no risk and typically considered as out of scope of E&L activities for delivery systems following industry benchmark and regulatory agency guidance. This case study is novel as it brings into attention the materials that might not normally be in consideration during the development process. It is highly recommended to understand materials in the context of intended use on a case-by-case basis and not to generalize to ensure successful development and qualification.


Asunto(s)
Preparaciones Farmacéuticas , Calidad de Vida , Biotecnología , Contaminación de Medicamentos , Embalaje de Medicamentos , Humanos
3.
J Biotechnol ; 203: 22-31, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-25797592

RESUMEN

High mannose (HM) glycan levels on secreted monoclonal antibodies can be influenced by external factors, including osmolality and copper deficiency, and by intrinsic factors determined by different cell lines. In order to identify the metabolic markers associated with HM glycan levels, metabolomics analysis was performed to assess the changes in the extracellular metabolites of recombinant cell lines at different time points during fed-batch production process. Ornithine was identified as the common metabolic marker influenced by both external and intrinsic factors when eight different medium conditions and eight different cell lines exhibiting different levels of HM were compared. A strong correlation was also observed between HM and mRNA expression levels of arginase 1, an enzyme that catalyzes the conversion of arginine to ornithine. The results from functional validation study showed that the supplementation of ornithine to the culture medium leads to an increased level of HM, while reduced concentration of spermine, a downstream product of ornithine metabolism, leads to a decreased level of HM. Additional metabolic markers correlating with HM glycan levels were identified from eight-cell line comparison analysis. A common feature shared by these identified markers is their previously described roles as contributors of cellular redox regulation.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Manosa/metabolismo , Polisacáridos/metabolismo , Animales , Arginasa/genética , Células CHO , Cobre/metabolismo , Cricetinae , Cricetulus , Medios de Cultivo , Metabolómica , Ornitina/metabolismo , ARN Mensajero/metabolismo , Proteínas Recombinantes/metabolismo , Espermina/metabolismo
4.
Biotechnol Prog ; 31(2): 522-31, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25583076

RESUMEN

Soy hydrolysates are widely used as a nutrient supplement in mammalian cell culture for the production of recombinant proteins. The batch-to-batch variability of a soy hydrolysate often leads to productivity differences. This report describes our metabolomics platform, which includes a battery of LC-MS/MS modes of operation, and advanced data analysis software for automated data processing. The platform was successfully used for screening productivity markers in soy hydrolysates during the production of two therapeutic antibodies in two Chinese hamster ovary cell lines. A total of 123 soy hydrolysate batches were analyzed, from which 62 batches were used in the production runs of cell line #1 and 12 batches were used in the production runs of cell line #2. For cell line #1, out of 19 amino acids, 106 other metabolites and 4,131 peptides identified in the soy hydrolysate batches being used, several nucleosides and short hydrophobic peptides showed negative correlation with antibody titer, while ornithine, citrulline and several amino acids and organic acids correlated positively with titer. For cell line #2, only ornithine and citrulline showed strong positive correlation. When ornithine was spiked into the culture media, both cell lines demonstrated accelerated cell growth, indicating ornithine as a root cause of the performance difference. It is proposed that better soy hydrolysate performance resulted from better bacterial fermentation during the hydrolysate production. A few selected markers were used to predict the performance of other soy hydrolysate batches for cell line #1. The predicted titers agreed with the experimental values with good accuracy.


Asunto(s)
Biomarcadores/análisis , Reactores Biológicos , Metaboloma/fisiología , Metabolómica/métodos , Hidrolisados de Proteína/análisis , Proteínas de Soja/análisis , Animales , Biomarcadores/metabolismo , Células CHO , Supervivencia Celular , Cricetinae , Cricetulus , Espectrometría de Masas , Análisis de Componente Principal , Hidrolisados de Proteína/metabolismo , Proteínas Recombinantes , Proteínas de Soja/metabolismo
5.
Toxicol Sci ; 84(2): 352-9, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15647600

RESUMEN

The neurochemical effects of repeated postnatal exposure to chlorpyrifos (CPS) were studied in developing rats. Rats were gavaged daily from postnatal day (PND) 1-21 with CPS in corn oil starting at 1.5 mg/kg (low dosage group) and increasing gradually to 3 mg/kg and then to 6 mg/kg (high dosage group). Brain cholinesterase (ChE) activity was significantly inhibited on PND 6, 12, 22, and 30, with maximum inhibition on PND 6 of 49 and 59% and recovering to 18 and 33% on PND 30 in the low and high dosage groups, respectively. On PND 22 and 30, 94% or greater of the inhibited ChE could not be reactivated by the oxime TMB-4 in both treatment groups, indicating aging of the phosphorylated ChE. Total muscarinic acetylcholine receptors (mAChR) were reduced in a dose-related manner on PND 12 and 22, with substantial recovery by PND 30. M1/M3 mAChR were significantly reduced on PND 6 and 12 only in the high dosage group, and on PND 22 in both groups, while M2/M4 mAChR were reduced in the high dosage group on PND 22 and 30. On PND 30 choline acetyltransferase activity and vesicular acetylcholine transporter levels were decreased by 12 and 22%, respectively, only in the high dosage group. High-affinity choline transporter levels were decreased at all time points in the high dosage group and on PND 6, 22, and 30 in the low dosage group. The results presented here demonstrate that repeated postnatal exposures to CPS result in transient reductions of mAChR and more persistent alterations of presynaptic cholinergic neurons. In addition, the long-term reduction of brain ChE activity observed following repeated postnatal exposure to CPS is attributable to permanent inactivation or "aging" of the enzyme.


Asunto(s)
Encéfalo/efectos de los fármacos , Cloropirifos/toxicidad , Colina O-Acetiltransferasa/metabolismo , Inhibidores de la Colinesterasa/toxicidad , Colinesterasas/metabolismo , Insecticidas/toxicidad , Receptores Muscarínicos/metabolismo , Administración Oral , Animales , Animales Recién Nacidos , Encéfalo/enzimología , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática , Ratas , Ratas Sprague-Dawley , Simportadores/metabolismo
6.
Toxicol Sci ; 77(1): 83-90, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14600274

RESUMEN

The neurochemical effects in developing rats exposed during gestation to the anticholinesterase organophosphorus insecticide chlorpyrifos (CPS) were determined. Pregnant rats were dosed daily with CPS (0, 3, or 7 mg/kg) in corn oil from gestation days (GD) 6-20. Pups were euthanized on postnatal days (PND) 1, 3, 6, 9, 12, and 30 for the determination of brain cholinesterase (ChE) and choline acetyltransferase (ChAT) activities, along with muscarinic receptor (mAChR) densities, the levels of the high-affinity choline uptake (HACU) system, and the vesicular acetylcholine transporter (VAChT). ChE activities were inhibited about 15 and 30% on PND 1, in the low- and high-dosage groups, respectively, and were not different from control values by PND 6. mAChR densities on PND 1 were reduced in the high-dosage group by about 18, 21, and 17%, using 3H-N-methylscopolamine, 3H-quinuclidinyl benzilate, and 3H-4-DAMP, respectively, as ligands, and were not different from control levels by PND 6. ChAT activity was decreased by approximately 12% in the high-dosage group on PND 9, 12, and 30. HACU levels, using 3H-hemicholinium-3 as the ligand, were reduced by approximately 25% on PND 6 in the low- and high-dosage groups, and by approximately 14 and 21% on PND 12 and 30, only in the high-dosage group. Levels of the VAChT were reduced by a range of 13-31% on PND 3 through 30 in the high-dosage group, using 3H-AH5183 (vesamicol) as the ligand. These data suggest that gestational exposure to 7 mg/kg/day CPS results in long-term alterations of presynaptic cholinergic neurochemistry.


Asunto(s)
Encéfalo/efectos de los fármacos , Cloropirifos/toxicidad , Insecticidas/toxicidad , Exposición Materna , Efectos Tardíos de la Exposición Prenatal , Administración Oral , Animales , Animales Recién Nacidos , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Química Encefálica , Cloropirifos/administración & dosificación , Colina O-Acetiltransferasa/metabolismo , Colinesterasas/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Insecticidas/administración & dosificación , Masculino , Proteínas de Transporte de Membrana/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley , Receptores Muscarínicos/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina , Proteínas de Transporte Vesicular/metabolismo
7.
J Toxicol Environ Health A ; 66(3): 275-89, 2003 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-12521672

RESUMEN

The effects of gestational exposure to the commonly used organophosphorus insecticide chlorpyrifos (O,O-diethyl O-[3,5,6-trichloro-2-pyridinyl]phosphorothioate) on postnatal central and peripheral cholinergic neurochemistry were investigated. Pregnant rats were orally dosed daily with chlorpyrifos (0, 3, 5, or 7 mg/kg) in corn oil from gestation day 6 to 20. Pups were sacrificed on postnatal days 1, 3, 6, 9, and 12 for the determination of brain, heart, lung, and serum cholinesterase, and brain choline acetyltransferase activities, along with liver carboxylesterase activity. Exposure to chlorpyrifos did not produce signs of overt toxicity to the dams or developing offspring. Cholinesterase activities were inhibited in a dose-related manner, with brain cholin-esterase inhibition of about 26%, 32%, and 45% on postnatal day 1. Inhibition of brain cholineste-rase persisted in all treatment groups until postnatal day 6 and in the medium and high-dosage groups through postnatal day 9. Liver carboxylesterase activity was also inhibited in a dose-related manner, with a recovery profile parallel to that of brain cholinesterase. Choline acetyltransferase activity was decreased by about 13% in the high-dosage group on postnatal days 9 and 12. These results indicate that gestational exposure to chlorpyrifos results in relatively persistent inhibition of brain cholinesterase and a delayed depression of choline acetyltransferase at a time when brain cholinesterase activity had returned to control levels in the high-dosage group.


Asunto(s)
Animales Recién Nacidos , Encéfalo/enzimología , Cloropirifos/toxicidad , Inhibidores de la Colinesterasa/toxicidad , Insecticidas/toxicidad , Intercambio Materno-Fetal , Análisis de Varianza , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Femenino , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/metabolismo , Exposición Materna , Embarazo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA