Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 43(42): 7006-7015, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37657932

RESUMEN

The speed-accuracy trade-off (SAT), whereby faster decisions increase the likelihood of an error, reflects a cognitive strategy humans must engage in during the performance of almost all daily tasks. To date, computational modeling has implicated the latent decision variable of response caution (thresholds), the amount of evidence required for a decision to be made, in the SAT. Previous imaging has associated frontal regions, notably the left prefrontal cortex and the presupplementary motor area (pre-SMA), with the setting of such caution levels. In addition, causal brain stimulation studies, using transcranial direct current stimulation (tDCS), have indicated that while both of these regions are involved in the SAT, their role appears to be dissociable. tDCS efficacy to impact decision-making processes has previously been linked with neurochemical concentrations and cortical thickness of stimulated regions. However, to date, it is unknown whether these neurophysiological measures predict individual differences in the SAT, and brain stimulation effects on the SAT. Using ultra-high field (7T) imaging, here we report that instruction-based adjustments in caution are associated with both neurochemical excitability (the balance between GABA+ and glutamate) and cortical thickness across a range of frontal regions in both sexes. In addition, cortical thickness, but not neurochemical concentrations, was associated with the efficacy of left prefrontal and superior medial frontal cortex (SMFC) stimulation to modulate performance. Overall, our findings elucidate key neurophysiological predictors, frontal neural excitation, of individual differences in latent psychological processes and the efficacy of stimulation to modulate these.SIGNIFICANCE STATEMENT The speed-accuracy trade-off (SAT), faster decisions increase the likelihood of an error, reflects a cognitive strategy humans must engage in during most daily tasks. The SAT is often investigated by explicitly instructing participants to prioritize speed or accuracy when responding to stimuli. Using ultra-high field (7T) magnetic resonance imaging (MRI), we found that individual differences in the extent to which participants adjust their decision strategies with instruction related to neurochemical excitability (ratio of GABA+ to glutamate) and cortical thickness in the frontal cortex. Moreover, brain stimulation to the left prefrontal cortex and the superior medial frontal cortex (SMFC) modulated performance, with the efficacy specifically related to cortical thickness. This work sheds new light on the neurophysiological basis of decision strategies and brain stimulation.


Asunto(s)
Corteza Motora , Estimulación Transcraneal de Corriente Directa , Masculino , Femenino , Humanos , Individualidad , Corteza Motora/fisiología , Ácido Glutámico , Ácido gamma-Aminobutírico
2.
Neuroimage ; 237: 118191, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34023450

RESUMEN

Theoretical work, supported by electrophysiological evidence, asserts that a balance between excitation and inhibition (E/I) is critical for healthy brain function. In magnetic resonance spectroscopy (MRS) studies, the ratio of excitatory (glutamate) and inhibitory (γ-aminobutyric acid, GABA) neurotransmitters is often used as a proxy for this E/I balance. Recent MRS work found a positive correlation between GABA+ and Glx (glutamate+glutamine) in medial parietal cortex, providing validation for this proxy and supporting the link between the E/I balance observed in electrophysiology and that detected with MRS. Here we assess the same relationship, between GABA+ and Glx, in visual and motor cortices of male and female human participants. We find moderate to strong evidence that there is no positive correlation between these neurotransmitters in either location. We show this holds true when controlling for a range of other factors (i.e., demographics, signal quality, tissue composition, other neurochemicals) and regardless of the state of neural activity (i.e., resting/active). These results show that there is no brain-wide balance between excitatory and inhibitory neurotransmitters and indicates a dissociation between the E/I balance observed in electrophysiological work and the ratio of MRS-detected neurotransmitters.


Asunto(s)
Ácido Glutámico/metabolismo , Glutamina/metabolismo , Espectroscopía de Resonancia Magnética , Corteza Motora/metabolismo , Corteza Visual/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Adulto , Femenino , Humanos , Masculino , Corteza Motora/diagnóstico por imagen , Corteza Visual/diagnóstico por imagen , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA