Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 14(32): e1703774, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29999236

RESUMEN

The stabilization and transport of low-solubility drugs, by encapsulation in nanoscopic delivery vectors (nanovectors), is a key paradigm in nanomedicine. However, the problems of carrier toxicity, specificity, and producibility create a bottleneck in the development of new nanomedical technologies. Copolymeric nanoparticles are an excellent platform for nanovector engineering due to their structural versatility; however, conventional fabrication processes rely upon harmful chemicals that necessitate purification. In engineering a more robust (copolymeric) nanovector platform, it is necessary to reconsider the entire process from copolymer synthesis through self-assembly and functionalization. To this end, a process is developed whereby biodegradable copolymers of poly(ethylene glycol)-block-poly(trimethylene carbonate), synthesized via organocatalyzed ring-opening polymerization, undergo assembly into highly uniform, drug-loaded micelles without the use of harmful solvents or the need for purification. The direct hydration methodology, employing oligo(ethylene glycol) as a nontoxic dispersant, facilitates rapid preparation of pristine, drug-loaded nanovectors that require no further processing. This method is robust, fast, and scalable. Utilizing parthenolide, an exciting candidate for treatment of acute lymphoblastic leukemia (ALL), discrete nanovectors are generated that show strikingly low carrier toxicity and high levels of specific therapeutic efficacy against primary ALL cells (as compared to normal hematopoietic cells).


Asunto(s)
Antineoplásicos/farmacología , Materiales Biocompatibles/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Agua/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Liberación de Fármacos , Humanos , Nanopartículas/ultraestructura , Polímeros/química , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico
2.
ACS Nano ; 11(1): 946-952, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28005325

RESUMEN

Infections caused by bacterial biofilms are an emerging threat to human health. Conventional antibiotic therapies are ineffective against biofilms due to poor penetration of the extracellular polymeric substance secreted by colonized bacteria coupled with the rapidly growing number of antibiotic-resistant strains. Essential oils are promising natural antimicrobial agents; however, poor solubility in biological conditions limits their applications against bacteria in both dispersed (planktonic) and biofilm settings. We report here an oil-in-water cross-linked polymeric nanocomposite (∼250 nm) incorporating carvacrol oil that penetrates and eradicates multidrug-resistant (MDR) biofilms. The therapeutic potential of these materials against challenging wound biofilm infections was demonstrated through specific killing of bacteria in a mammalian cell-biofilm coculture wound model.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Reactivos de Enlaces Cruzados/farmacología , Nanocompuestos/química , Polímeros/farmacología , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Reactivos de Enlaces Cruzados/síntesis química , Reactivos de Enlaces Cruzados/química , Relación Dosis-Respuesta a Droga , Enterobacter cloacae/efectos de los fármacos , Enterobacter cloacae/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Ratones , Pruebas de Sensibilidad Microbiana , Células 3T3 NIH , Polímeros/síntesis química , Polímeros/química , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA