Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cancer Res ; 20(5): 722-734, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35149545

RESUMEN

Targeted therapy of ROS1-fusion-driven non-small cell lung cancer (NSCLC) has achieved notable clinical success. Despite this, resistance to therapy inevitably poses a significant challenge. MYC amplification was present in ∼19% of lorlatinib-resistant ROS1-driven NSCLC. We hypothesized that MYC overexpression drives ROS1-TKI resistance. Using complementary approaches in multiple models, including a MYC-amplified patient-derived cell line and xenograft (LUAD-0006), we established that MYC overexpression induces broad ROS1-TKI resistance. Pharmacologic inhibition of ROS1 combined with MYC knockdown were essential to completely suppress LUAD-0006 cell proliferation compared with either treatment alone. We interrogated cellular signaling in ROS1-TKI-resistant LUAD-0006 and discovered significant differential regulation of targets associated with cell cycle, apoptosis, and mitochondrial function. Combinatorial treatment of mitochondrial inhibitors with crizotinib revealed inhibitory synergism, suggesting increased reliance on glutamine metabolism and fatty-acid synthesis in chronic ROS1-TKI treated LUAD-0006 cells. In vitro experiments further revealed that CDK4/6 and BET bromodomain inhibitors effectively mitigate ROS1-TKI resistance in MYC-overexpressing cells. Notably, in vivo studies demonstrate that tumor control may be regained by combining ROS1-TKI and CDK4/6 inhibition. Our results contribute to the broader understanding of ROS1-TKI resistance in NSCLC. IMPLICATIONS: This study functionally characterizes MYC overexpression as a novel form of therapeutic resistance to ROS1 tyrosine kinase inhibitors in non-small cell lung cancer and proposes rational combination treatment strategies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas c-myc/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Resistencia a Antineoplásicos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas
2.
JCO Precis Oncol ; 20172017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28890946

RESUMEN

PURPOSE: With prospective clinical sequencing of tumors emerging as a mainstay in cancer care, there is an urgent need for a clinical support tool that distills the clinical implications associated with specific mutation events into a standardized and easily interpretable format. To this end, we developed OncoKB, an expert-guided precision oncology knowledge base. METHODS: OncoKB annotates the biological and oncogenic effect and the prognostic and predictive significance of somatic molecular alterations. Potential treatment implications are stratified by the level of evidence that a specific molecular alteration is predictive of drug response based on US Food and Drug Administration (FDA) labeling, National Comprehensive Cancer Network (NCCN) guidelines, disease-focused expert group recommendations and the scientific literature. RESULTS: To date, over 3000 unique mutations, fusions, and copy number alterations in 418 cancer-associated genes have been annotated. To test the utility of OncoKB, we annotated all genomic events in 5983 primary tumor samples in 19 cancer types. Forty-one percent of samples harbored at least one potentially actionable alteration, of which 7.5% were predictive of clinical benefit from a standard treatment. OncoKB annotations are available through a public web resource (http://oncokb.org/) and are also incorporated into the cBioPortal for Cancer Genomics to facilitate the interpretation of genomic alterations by physicians and researchers. CONCLUSION: OncoKB, a comprehensive and curated precision oncology knowledge base, offers oncologists detailed, evidence-based information about individual somatic mutations and structural alterations present in patient tumors with the goal of supporting optimal treatment decisions.

3.
Clin Cancer Res ; 17(19): 6322-8, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21831955

RESUMEN

PURPOSE: Given the unprecedented efficacy of EGFR tyrosine kinase inhibitors (TKI) in advanced EGFR-mutant lung cancer, adjuvant TKI therapy is an appealing strategy. However, there are conflicting findings regarding the potential benefit of adjuvant EGFR-TKI in patients with lung cancer harboring EGFR mutations. To better understand these results, we studied the natural history of lung cancers which recurred despite adjuvant TKI. EXPERIMENTAL DESIGN: Patients with recurrent EGFR-mutant lung cancer following adjuvant TKI were identified using an Institutional Review Board-approved mechanism. Recurrent cancer specimens were tested for resistance mutations. Sensitivity to retreatment with EGFR-TKI was evaluated. RESULTS: Twenty-two patients with cancers harboring an EGFR sensitizing mutation received adjuvant erlotinib or gefitinib for a median of 17 months (range 1-37 months). T790M was more common in cancers which recurred while receiving TKI than in those which recurred after stopping TKI (67% vs. 0%, P = 0.011). Fourteen patients who developed recurrence after stopping EGFR-TKI were retreated, with a median time to progression of 10 months and radiographic response seen in 8 of 11 patients with evaluable disease (73%). CONCLUSIONS: Recurrence of EGFR-mutant lung cancer after stopping adjuvant TKI should not preclude a trial of TKI retreatment; a phase II trial of erlotinib in this setting is underway. Studies of adjuvant EGFR-TKI will underestimate the potential survival benefit of adjuvant TKI for patients with EGFR-mutant lung cancers if retreatment at recurrence is not given.


Asunto(s)
Antineoplásicos/uso terapéutico , Receptores ErbB/genética , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinazolinas/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Quimioterapia Adyuvante , Resistencia a Antineoplásicos , Receptores ErbB/antagonistas & inhibidores , Clorhidrato de Erlotinib , Gefitinib , Humanos , Persona de Mediana Edad , Mutación , Recurrencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA