Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharmaceutics ; 15(1)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36678869

RESUMEN

In the last years, the medicinal plant Perilla frutescens (L.) Britton has gained scientific interest because leaf extracts, due to the presence of rosmarinic acid and other polyphenols, have shown anti-allergic and skin protective potential in pre-clinical studies. Nevertheless, the lack of standardized extracts has limited clinical applications to date. In this work, for the first time, a standardized phytocomplex of P. frutescens, enriched in rosmarinic acid and total polyphenols, was produced through innovative in vitro cell culture biotechnology and tested. The activity of perilla was evaluated in an in vitro inflammatory model of human keratinocytes (HaCaT) by monitoring tight junctions, filaggrin, and loricrin protein levels, the release of pro-inflammatory cytokines and JNK MAPK signaling. In a practical health care application, the perilla biotechnological phytocomplex was tested in a multilayer model of vaginal mucosa, and then, in a preliminary clinical observation to explore its capacity to preserve vaginal mucosal integrity in women in peri-menopause. In keratinocytes cells, perilla phytocomplex demonstrated to exert a marked activity in epidermis barrier maintenance and anti-inflammatory effects, preserving tight junction expression and downregulating cytokines release through targeting JNK activation. Furthermore, perilla showed positive effects in retaining vaginal mucosal integrity in the reconstructed vaginal mucosa model and in vivo tests. Overall, our data suggest that the biotechnological P. frutescens phytocomplex could represent an innovative ingredient for dermatological applications.

2.
Phytother Res ; 36(5): 2246-2263, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35393641

RESUMEN

Cannabis sativa L. is increasingly emerging for its protective role in modulating neuroinflammation, a complex process orchestrated among others by microglia, the resident immune cells of the central nervous system. Phytocannabinoids, especially cannabidiol (CBD), terpenes, and other constituents trigger several upstream and downstream microglial intracellular pathways. Here, we investigated the molecular mechanisms of a CBD- and terpenes-enriched C. sativa extract (CSE) in an in vitro model of neuroinflammation. We evaluated the effect of CSE on the inflammatory response induced by exposure to lipopolysaccharide (LPS) in BV-2 microglial cells, compared with CBD and ß-caryophyllene (CAR), CB2 receptors (CB2r) inverse and full agonist, respectively. The LPS-induced upregulation of the pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α was significantly attenuated by CSE and only partially by CBD, whereas CAR was ineffective. In BV-2 cells, these anti-inflammatory effects exerted by CSE phytocomplex were only partially dependent on CB2r modulation and they were mediated by the regulation of enzymes responsible for the endocannabinoids metabolism, by the inhibition of reactive oxygen species release and the modulation of JNK/p38 cascade with consequent NF-κB p65 nuclear translocation suppression. Our data suggest that C. sativa phytocomplex and its multitarget mechanism could represent a novel therapeutic strategy for neuroinflammatory-related diseases.


Asunto(s)
Cannabidiol , Cannabis , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Citocinas/metabolismo , Endocannabinoides/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Microglía , FN-kappa B/metabolismo , Receptor Cannabinoide CB2/metabolismo
3.
Microorganisms ; 9(12)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34946029

RESUMEN

Numerous nutraceuticals and botanical food supplements are used with the intention of modulating body weight. A recent review examined the main food supplements used in weight loss, dividing them according to the main effects for which they were investigated. The direct or indirect effects exerted on the intestinal microbiota can also contribute to the effectiveness of these substances. The aim of this review is to evaluate whether any prebiotic effects, which could help to explain their efficacy or ineffectiveness, are documented in the recent literature for the main nutraceuticals and herbal food supplements used for weight loss management. Several prebiotic effects have been reported for various nutraceutical substances, which have shown activity on Bifidobacterium spp., Lactobacillus spp., Akkermansia muciniphila, Faecalibacterium prausnitzi, Roseburia spp., and the Firmicutes/Bacteroidetes ratio. Different prebiotics have beneficial effects on weight and the related metabolic profile, in some cases even acting on the microbiota with mechanisms that are completely independent from those nutraceuticals for which certain products are normally used. Further studies are necessary to clarify the different levels at which a nutraceutical substance can exert its action.

4.
Brain Behav Immun ; 74: 277-290, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30244035

RESUMEN

Epigenetic modifications of DNA and histone proteins are emerging as fundamental mechanisms by which neural cells adapt their transcriptional response to environmental cues, such as, immune stimuli or stress. In particular, histone H3 phospho(Ser10)-acetylation(Lys14) (H3S10phK14ac) has been linked to activation of specific gene expression. The purpose of this study was to investigate the role of H3S10phK14ac in a neuroinflammatory condition. Adult male rats received a intraperitoneal injection of lipopolysaccharide (LPS) (830 µg/Kg/i.p., n = 6) or vehicle (saline 1 mL/kg/i.p., n = 6) and were sacrificed 2 or 6 h later. We showed marked region- and time-specific increases in H3S10phK14ac in the hypothalamus and hippocampus, two principal target regions of LPS. These changes were accompanied by a marked transcriptional activation of interleukin (IL) 1ß, IL-6, Tumour Necrosis Factor (TNF) α, the inducible nitric oxide synthase (iNOS) and the immediate early gene c-Fos. By means of chromatin immunoprecipitation, we demonstrated an increased region- and time-specific association of H3S10phK14ac with the promoters of IL-6, c-Fos and iNOS genes, suggesting that part of the LPS-induced transcriptional activation of these genes is regulated by H3S10phK14ac. Finally, by means of multiple immunofluorescence approach, we showed that increased H3S10phK14ac is cell type-specific, being neurons and reactive microglia, the principal histological types involved in this response. Present data point to H3S10phK14ac as a principal epigenetic regulator of neural cell response to systemic LPS and underline the importance of distinct time-, region- and cell-specific epigenetic mechanisms that regulate gene transcription to understand the mechanistic complexity of neuroinflammatory response to immune challenges.


Asunto(s)
Histonas/metabolismo , Neuroinmunomodulación/efectos de los fármacos , Acetilación/efectos de los fármacos , Animales , Encéfalo/metabolismo , Epigénesis Genética/fisiología , Expresión Génica/efectos de los fármacos , Hipocampo/metabolismo , Hipotálamo/metabolismo , Lipopolisacáridos/farmacología , Masculino , Microglía/metabolismo , Microglía/fisiología , Neuroinmunomodulación/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Activación Transcripcional/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
5.
Bioorg Med Chem ; 26(14): 4288-4300, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30031653

RESUMEN

Several neurodegenerative diseases, like Alzheimer's (AD), are characterized by amyloid fibrillar deposition of misfolded proteins, and this feature can be exploited for both diagnosis and therapy design. In this paper, structural modifications of curcumin scaffold were examined in order to improve its bioavailability and stability in physiological conditions, as well as its ability to interfere with ß-amyloid fibrils and aggregates. The acid-base behaviour of curcumin derivatives, their pharmacokinetic stability in physiological conditions, and in vitro ability to interfere with Aß fibrils at different incubation time were investigated. The mechanisms governing these phenomena have been studied at atomic level by means of molecular docking and dynamic simulations. Finally, biological activity of selected curcuminoids has been investigated in vitro to evaluate their safety and efficiency in oxidative stress protection on hippocampal HT-22 mouse cells. Two aromatic rings, π-conjugated structure and H-donor/acceptor substituents on the aromatic rings showed to be the sine qua non structural features to provide interaction and disaggregation activity even at very low incubation time (2h). Computational simulations proved that upon binding the ligands modify the conformational dynamics and/or interact with the amyloidogenic region of the protofibril facilitating disaggregation. Significantly, in vitro results on hippocampal cells pointed out protection against glutamate toxicity and safety when administered at low concentrations (1 µM). On the overall, in view of its higher stability in physiological conditions with respect to curcumin, of his rapid binding to fibrillar aggregates and strong depolymerizing activity, phtalimmide derivative K2F21 appeared a good candidate for both AD diagnostic and therapeutic purposes.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Curcumina/farmacología , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Curcumina/síntesis química , Curcumina/química , Relación Dosis-Respuesta a Droga , Ratones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Agregado de Proteínas/efectos de los fármacos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA