Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Pain ; 16: 1744806920955103, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32880221

RESUMEN

Neuropathic pain is a chronic disease state resulting from injury to the nervous system. This type of pain often responds poorly to standard treatments and occasionally may get worse instead of better over time. Patients who experience neuropathic pain report sensitivity to cold and mechanical stimuli. Since the nociceptive system of African naked mole-rats contains unique adaptations that result in insensitivity to some pain types, we investigated whether naked mole-rats may be resilient to sensitivity following nerve injury. Using the spared nerve injury model of neuropathic pain, we showed that sensitivity to mechanical stimuli developed similarly in mice and naked mole-rats. However, naked mole-rats lacked sensitivity to mild cold stimulation after nerve injury, while mice developed robust cold sensitivity. We pursued this response deficit by testing behavior to activators of transient receptor potential (TRP) receptors involved in detecting cold in naïve animals. Following mustard oil, a TRPA1 activator, naked mole-rats responded similarly to mice. Conversely, icilin, a TRPM8 agonist, did not evoke pain behavior in naked mole-rats when compared with mice. Finally, we used RNAscope to probe for TRPA1 and TRPM8 messenger RNA expression in dorsal root ganglia of both species. We found increased TRPA1 messenger RNA, but decreased TRPM8 punctae in naked mole-rats when compared with mice. Our findings likely reflect species differences due to evolutionary environmental responses that are not easily explained by differences in receptor expression between the species.


Asunto(s)
Ganglios Espinales/metabolismo , Ganglios Espinales/fisiología , Neuralgia/metabolismo , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Frío , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/lesiones , Masculino , Ratones , Ratas Topo , Planta de la Mostaza , Neuronas/metabolismo , Neuronas/fisiología , Nocicepción , Dimensión del Dolor , Aceites de Plantas/farmacología , Pirimidinonas/farmacología , Canal Catiónico TRPA1/genética , Canales Catiónicos TRPM/agonistas , Canales Catiónicos TRPM/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-28160445

RESUMEN

Photothermal therapy (PTT), in which nanoparticles embedded within tumors generate heat in response to exogenously applied laser light, has been well documented as an independent strategy for highly selective cancer treatment. Gold-based nanoparticles are the main mediators of PTT because they offer: (1) biocompatibility, (2) small diameters that enable tumor penetration upon systemic delivery, (3) simple gold-thiol bioconjugation chemistry for the attachment of desired molecules, (4) efficient light-to-heat conversion, and (5) the ability to be tuned to absorb near-infrared light, which penetrates tissue more deeply than other wavelengths of light. In addition to acting as a standalone therapy, gold nanoparticle-mediated PTT has recently been evaluated in combination with other therapies, such as chemotherapy, gene regulation, and immunotherapy, for enhanced anti-tumor effects. When delivered independently, the therapeutic success of molecular agents is hindered by premature degradation, insufficient tumor delivery, and off-target toxicity. PTT can overcome these limitations by enhancing tumor- or cell-specific delivery of these agents or by sensitizing cancer cells to these additional therapies. All together, these benefits can enhance the therapeutic success of both PTT and the secondary treatment while lowering the required doses of the individual agents, leading to fewer off-target effects. Given the benefits of combining gold nanoparticle-mediated PTT with other treatment strategies, many exciting opportunities for multimodal cancer treatment are emerging that will ultimately lead to improved patient outcomes. WIREs Nanomed Nanobiotechnol 2017, 9:e1449. doi: 10.1002/wnan.1449 For further resources related to this article, please visit the WIREs website.


Asunto(s)
Oro , Nanopartículas , Neoplasias/terapia , Fototerapia , Humanos , Rayos Infrarrojos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA