Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 39(49): 9767-9781, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31666353

RESUMEN

Stress responses are coordinated by widespread neural circuits. Homeostatic and psychogenic stressors activate preproglucagon (PPG) neurons in the caudal nucleus of the solitary tract (cNTS) that produce glucagon-like peptide-1; published work in rodents indicates that these neurons play a crucial role in stress responses. While the axonal targets of PPG neurons are well established, their afferent inputs are unknown. Here we use retrograde tracing with cholera toxin subunit b to show that the cNTS in male and female mice receives axonal inputs similar to those reported in rats. Monosynaptic and polysynaptic inputs specific to cNTS PPG neurons were revealed using Cre-conditional pseudorabies and rabies viruses. The most prominent sources of PPG monosynaptic input include the lateral (LH) and paraventricular (PVN) nuclei of the hypothalamus, parasubthalamic nucleus, lateral division of the central amygdala, and Barrington's nucleus (Bar). Additionally, PPG neurons receive monosynaptic vagal sensory input from the nodose ganglia and spinal sensory input from the dorsal horn. Sources of polysynaptic input to cNTS PPG neurons include the hippocampal formation, paraventricular thalamus, and prefrontal cortex. Finally, cNTS-projecting neurons within PVN, LH, and Bar express the activation marker cFOS in mice after restraint stress, identifying them as potential sources of neurogenic stress-induced recruitment of PPG neurons. In summary, cNTS PPG neurons in mice receive widespread monosynaptic and polysynaptic input from brain regions implicated in coordinating behavioral and physiological stress responses, as well as from vagal and spinal sensory neurons. Thus, PPG neurons are optimally positioned to integrate signals of homeostatic and psychogenic stress.SIGNIFICANCE STATEMENT Recent research has indicated a crucial role for glucagon-like peptide-1-producing preproglucagon (PPG) neurons in regulating both appetite and behavioral and autonomic responses to acute stress. Intriguingly, the central glucagon-like peptide-1 system defined in rodents is conserved in humans, highlighting the translational importance of understanding its anatomical organization. Findings reported here indicate that PPG neurons receive significant monosynaptic and polysynaptic input from brain regions implicated in autonomic and behavioral responses to stress, as well as direct input from vagal and spinal sensory neurons. Improved understanding of the neural pathways underlying the recruitment of PPG neurons may facilitate the development of novel therapies for the treatment of stress-related disorders.


Asunto(s)
Neuronas/fisiología , Proglucagón/fisiología , Sinapsis/fisiología , Nervio Vago/fisiología , Animales , Axones/fisiología , Femenino , Hipotálamo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Neuronas Aferentes/fisiología , Células del Asta Posterior/fisiología , Reflejo Monosináptico/fisiología , Restricción Física , Núcleo Solitario/citología , Núcleo Solitario/fisiología , Estrés Psicológico/fisiopatología , Tálamo/fisiología
2.
J Neurosci ; 37(2): 362-370, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28077715

RESUMEN

Cisplatin chemotherapy is commonly used to treat cancer despite severe energy balance side effects. In rats, cisplatin activates nucleus tractus solitarius (NTS) projections to the lateral parabrachial nucleus (lPBN) and calcitonin-gene related peptide (CGRP) projections from the lPBN to the central nucleus of the amygdala (CeA). We demonstrated previously that CeA glutamate receptor signaling mediates cisplatin-induced anorexia and body weight loss. Here, we used neuroanatomical tracing, immunofluorescence, and confocal imaging to demonstrate that virtually all NTS→lPBN and lPBN→CeA CGRP projections coexpress vesicular glutamate transporter 2 (VGLUT2), providing evidence that excitatory projections mediate cisplatin-induced energy balance dysregulation. To test whether lPBN→CeA projection neurons are required for cisplatin-induced anorexia and weight loss, we inhibited these neurons chemogenetically using a retrograde Cre-recombinase-expressing canine adenovirus-2 in combination with Cre-dependent inhibitory Designer Receptors Exclusive Activated by Designer Drugs (DREADDs) before cisplatin treatment. Inhibition of lPBN→CeA neurons attenuated cisplatin-induced anorexia and body weight loss significantly. Using a similar approach, we additionally demonstrated that inhibition of NTS→lPBN neurons attenuated cisplatin-induced anorexia and body weight loss significantly. Together, our data support the view that excitatory hindbrain-forebrain projections are necessary for cisplatin's untoward effects on energy intake, elucidating a key neuroanatomical circuit driving pathological anorexia and weight loss that accompanies chemotherapy treatment. SIGNIFICANCE STATEMENT: Chemotherapy treatments are commonly used to treat cancers despite accompanying anorexia and weight loss that may limit treatment adherence and reduce patient quality of life. Strikingly, we lack a neural understanding of, and effective treatments for, chemotherapy-induced anorexia and weight loss. The current data characterize the excitatory nature of neural projections activated by cisplatin in rats and reveal the necessity of specific hindbrain-forebrain projections for cisplatin-induced anorexia and weight loss. Together, these findings help to characterize the neural mechanisms mediating cisplatin-induced anorexia, advancing opportunities to develop better-tolerated chemotherapies and adjuvant therapies to prevent anorexia and concurrent nutritional deficiencies during cancer treatment.


Asunto(s)
Amígdala del Cerebelo/fisiología , Anorexia/inducido químicamente , Cisplatino/toxicidad , Núcleos Parabraquiales/fisiología , Núcleo Solitario/fisiología , Pérdida de Peso/fisiología , Amígdala del Cerebelo/efectos de los fármacos , Animales , Anorexia/fisiopatología , Antineoplásicos/toxicidad , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Núcleos Parabraquiales/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Núcleo Solitario/efectos de los fármacos , Pérdida de Peso/efectos de los fármacos
3.
Brain Struct Funct ; 220(5): 3011-22, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25012114

RESUMEN

The expression of a vesicular glutamate transporter (VGLUT) suffices to assign a glutamatergic phenotype to neurons and other secretory cells. For example, intestinal L cells express VGLUT2 and secrete glutamate along with glucagon-like peptide 1 (GLP1). We hypothesized that GLP1-positive neurons within the caudal (visceral) nucleus of the solitary tract (cNST) also are glutamatergic. To test this, the axonal projections of GLP1 and other neurons within the cNST were labeled in rats via iontophoretic delivery of anterograde tracer. Dual immunofluorescence and confocal microscopy was used to visualize tracer-, GLP1-, and VGLUT2-positive fibers within brainstem, hypothalamic, and limbic forebrain nuclei that receive input from the cNST. Electron microscopy was used to confirm GLP1 and VGLUT2 immunolabeling within the same axon varicosities, and fluorescent in situ hybridization was used to examine VGLUT2 mRNA expression by GLP1-positive neurons. Most anterograde tracer-labeled fibers displayed VGLUT2-positive varicosities, providing new evidence that ascending axonal projections from the cNST are primarily glutamatergic. Virtually all GLP1-positive varicosities also were VGLUT2-positive. Electron microscopy confirmed the colocalization of GLP1 and VGLUT2 immunolabeling in axon terminals that formed asymmetric (excitatory-type) synapses with unlabeled dendrites in the hypothalamus. Finally, in situ hybridization confirmed that GLP1-positive cNST neurons express VGLUT2 mRNA. Thus, hindbrain GLP1 neurons in rats are equipped to store glutamate in synaptic vesicles, and likely co-release both glutamate and GLP1 from axon varicosities and terminals in the hypothalamus and other brain regions.


Asunto(s)
Péptido 1 Similar al Glucagón/metabolismo , Neuronas/metabolismo , Núcleo Solitario/metabolismo , Sinapsis/metabolismo , Animales , Ácido Glutámico/metabolismo , Hipotálamo/metabolismo , Masculino , Vías Nerviosas/metabolismo , Fenotipo , Terminales Presinápticos/metabolismo , Ratas Sprague-Dawley , Vesículas Sinápticas/metabolismo
4.
Am J Physiol Regul Integr Comp Physiol ; 306(8): R576-85, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24523344

RESUMEN

Leptin released peripherally acts within the central nervous system (CNS) to modulate numerous physiological and behavioral functions. Histochemical identification of leptin-responsive CNS cells can reveal the specific cellular phenotypes and neural circuits through which leptin signaling modulates these functions. Leptin signaling elicits phosphorylation of signal transducer and activator of transcription 3 (pSTAT3), making pSTAT3-immunoreactivity (ir) a useful proxy for identifying leptin-responsive cells. Relatively low systemic doses of leptin (i.e., 10-130 µg/kg body wt) are sufficient to decrease food intake, inhibit gastric emptying, and increase sympathetic activity, but there are no histological reports of central pSTAT3-ir following leptin doses within this range. Considering this, we quantified central pSTAT3-ir in rats after intraperitoneal injections of leptin at doses ranging from 50 to 800 µg/kg body wt. Tissue sections were processed to identify pSTAT3-ir alone or in combination with immunolabeling for cocaine- and amphetamine-regulated transcript (CART), glucagon-like peptide-1 (GLP-1), prolactin-releasing peptide (PrRP), or dopamine-ß-hydroxylase (DßH). Leptin doses as low as 50, 100, and 200 µg/kg body wt significantly increased the number of pSTAT3-ir cells in the arcuate nucleus of the hypothalamus (ARC), nucleus of the solitary tract (NTS), and ventromedial nucleus of the hypothalamus, respectively, and also led to robust pSTAT3 labeling in neural processes. The differential dose-dependent increases in pSTAT3-ir across brain regions provide new information regarding central leptin sensitivity. Within the ARC, CART-ir and pSTAT3-ir were often colocalized, consistent with evidence of leptin sensitivity in this neural population. Conversely, within the NTS, pSTAT3 only rarely colocalized with PrRP and/or DßH, and never with GLP-1.


Asunto(s)
Hipotálamo/efectos de los fármacos , Leptina/farmacología , Neuronas/efectos de los fármacos , Rombencéfalo/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Hipotálamo/metabolismo , Masculino , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Rombencéfalo/metabolismo , Transducción de Señal/efectos de los fármacos , Núcleo Solitario/efectos de los fármacos , Núcleo Solitario/metabolismo
5.
Brain Res ; 1350: 18-34, 2010 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-20353764

RESUMEN

Metabolic homeostasis reflects the complex output of endocrine, autonomic, and behavioral control circuits that extend throughout the central nervous system. Brain regions that control food intake and energy expenditure are privy to continuous visceral sensory feedback signals that presumably modulate appetite, satiety, digestion, and metabolism. Sensory signals from the gastrointestinal tract and associated digestive viscera are delivered to the brain primarily by vagal afferents that terminate centrally within the caudal nucleus of the solitary tract (NST), with signals subsequently relayed to higher brain regions by parallel noradrenergic and peptidergic projection pathways arising within the NST. This article begins with an overview of these ascending pathways identified in adult rats using a standard anterograde tracer microinjected into the caudal visceral sensory region of the NST, and also by immunocytochemical localization of glucagon-like peptide-1. NST projection targets identified by these two approaches are compared to the distribution of neurons that become infected after inoculating the ventral stomach wall with a neurotropic virus that transneuronally infects synaptically-linked chains of neurons in the anterograde (i.e., ascending sensory) direction. Although the focus of this article is the anatomical organization of axonal projections from the caudal visceral NST to the hypothalamus and limbic forebrain, discussion is included regarding the hypothesized role of these projections in modulating behavioral arousal and coordinating endocrine and behavioral (i.e., hypophagic) responses to stress.


Asunto(s)
Ingestión de Alimentos/fisiología , Metabolismo Energético/fisiología , Hipotálamo/fisiología , Núcleo Solitario/fisiología , Animales , Péptido 1 Similar al Glucagón/metabolismo , Vías Nerviosas/fisiología , Neuronas/fisiología
6.
Am J Physiol Regul Integr Comp Physiol ; 293(4): R1495-503, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17670858

RESUMEN

We previously reported that noradrenergic (NA) neurons in the nucleus of the solitary tract (NST) are necessary for exogenous CCK octapeptide to inhibit food intake in rats. To determine whether NST NA neurons also are necessary for lithium chloride (LiCl) to inhibit food intake and/or to support conditioned avoidance behavior, saporin toxin conjugated to an antibody against dopamine beta hydroxylase (DSAP) was microinjected bilaterally into the NST to ablate resident NA neurons. DSAP and sham control rats subsequently were tested for the ability of LiCl (0.15M, 2% body wt) to inhibit food intake and to support conditioned flavor avoidance (CFA). LiCl-induced hypophagia was significantly blunted in DSAP rats, and those with the most extensive loss of NST NA neurons demonstrated the most attenuated LiCl-induced hypophagia. Conversely, LiCl supported a robust CFA that was of similar magnitude in sham control and DSAP rats, including rats with the most extensive NA lesions. A terminal c-Fos study revealed intact LiCl-induced c-Fos expression in the lateral parabrachial nucleus and central amygdala in DSAP rats, despite significant loss of NST NA neurons and attenuated c-Fos activation of corticotropin-releasing hormone-positive neurons in the paraventricular nucleus of the hypothalamus (PVN). Thus, NST NA neurons contribute significantly to LiCl-induced hypophagia and recruitment of stress-responsive PVN neurons but appear to be unnecessary for CFA learning and expression. These findings support the view that distinct central nervous system circuits underlie LiCl-induced inhibition of food intake and conditioned avoidance behavior in rats.


Asunto(s)
Reacción de Prevención/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Cloruro de Litio/farmacología , Animales , Anticuerpos , Dopamina beta-Hidroxilasa/antagonistas & inhibidores , Aromatizantes , Expresión Génica , Genes fos/genética , Hipotálamo/efectos de los fármacos , Hipotálamo/fisiología , Masculino , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Norepinefrina/farmacología , Ratas , Ratas Sprague-Dawley , Núcleo Solitario/fisiología
7.
Front Neuroendocrinol ; 28(1): 50-60, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17391741

RESUMEN

Interoceptive feedback signals from the body are transmitted to hypothalamic neurons that control pituitary hormone release. This review article describes the organization of central neural pathways that convey ascending visceral sensory signals to endocrine neurons in the paraventricular (PVN) and supraoptic nuclei (SON) of the hypothalamus in rats. A special emphasis is placed on viscerosensory inputs to corticotropin releasing factor (CRF)-containing PVN neurons that drive the hypothalamic-pituitary-adrenal axis, and on inputs to magnocellular PVN and SON neurons that release vasopressin (AVP) or oxytocin (OT) from the posterior pituitary. The postnatal development of these ascending pathways also is considered.


Asunto(s)
Hipotálamo/anatomía & histología , Neuronas Aferentes/fisiología , Hipófisis , Vísceras/inervación , Animales , Neuronas/citología , Neuronas/metabolismo , Neuronas Aferentes/citología , Neuropéptidos/metabolismo , Hipófisis/inervación , Hipófisis/fisiología
8.
J Neurosci ; 26(44): 11442-53, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17079674

RESUMEN

The alpha2 adrenoceptor antagonist yohimbine (YO) increases transmitter release from adrenergic/noradrenergic (NA) neurons. Systemic YO activates the hypothalamic-pituitary-adrenal (HPA) axis, inhibits feeding, and supports conditioned flavor avoidance (CFA) in rats. To determine whether these effects require NA inputs to the bed nucleus of the stria terminalis (BNST), vehicle or saporin toxin conjugated to an antibody against dopamine beta hydroxylase (DSAP) was microinjected bilaterally into the BNST to remove its NA inputs. Subsequent tests failed to reveal any lesion effect on the ability of YO (5.0 mg/kg, i.p.) to inhibit food intake or to support CFA. Conversely, HPA axis responses to YO were significantly blunted in DSAP rats. In a terminal experiment, DSAP and control rats were perfused 90-120 min after intraperitoneal injection of YO or vehicle. Brains were processed to reveal Fos immunolabeling and lesion extent. NA fibers were markedly depleted in the BNST and medial parvocellular paraventricular hypothalamus (PVNmp) in DSAP rats, evidence for collateralized NA inputs to these regions. DSAP rats displayed significant loss of caudal medullary NA neurons, and markedly blunted Fos activation in the BNST and in corticotropin-releasing hormone-positive PVNmp neurons after YO. We conclude that a population of medullary NA neurons provides collateral inputs to the BNST and PVNmp, and that these inputs contribute importantly to Fos expression and HPA axis activation after YO treatment. Conversely, NA-mediated activation of BNST and PVNmp neurons is unnecessary for YO to inhibit food intake or support CFA, evidence for the sufficiency of other intact neural pathways in mediating those effects.


Asunto(s)
Reacción de Prevención/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Norepinefrina/fisiología , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleos Septales/efectos de los fármacos , Yohimbina/administración & dosificación , Animales , Reacción de Prevención/fisiología , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Ingestión de Alimentos/fisiología , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/fisiología , Hipotálamo/efectos de los fármacos , Hipotálamo/fisiología , Masculino , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/fisiología , Ratas , Ratas Sprague-Dawley , Núcleos Septales/fisiología
9.
Dev Psychobiol ; 48(5): 389-96, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16770760

RESUMEN

Ingestive behavior is a complex product of distributed central control systems that respond to a diverse array of internal and external sensory stimuli. Relatively little is known regarding the pathways and mechanisms by which relevant signals are conveyed to the neural circuits that ultimately control ingestive motor output. This report summarizes findings regarding the postnatal development of descending hypothalamic inputs to the hindbrain dorsal vagal complex (DVC). Evidence accumulated primarily in rats indicates that descending neural projections from the hypothalamus to the DVC are both structurally and functionally immature at birth. The progressive postnatal maturation of these projections occurs in parallel with newly emerging physiological and behavioral responsiveness to treatments and stimuli that affect food intake in adults. Thus, the postnatal emergence of new feeding controls may reflect the emerging access of these controls to DVC neural circuits.


Asunto(s)
Conducta Alimentaria/fisiología , Hipotálamo/fisiología , Red Nerviosa/fisiología , Rombencéfalo/fisiología , Animales , Ingestión de Alimentos/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Ratas , Nervio Vago/fisiología
10.
Am J Physiol Regul Integr Comp Physiol ; 288(6): R1716-26, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15661969

RESUMEN

Interoceptive stimuli modulate stress responses and emotional state, in part, via ascending viscerosensory inputs to the hypothalamus and limbic forebrain. It is unclear whether similar viscerosensory pathways are recruited by emotionally salient exteroceptive stimuli, such as odors. To address this question, we investigated conditioned avoidance and central c-Fos activation patterns in rats exposed to synthetic trimethylthiazoline (TMT), an odiferous natural component of fox feces. Experiment 1 demonstrated that rats avoid consuming novel flavors that previously were paired with TMT exposure, evidence that TMT supports conditioned flavor avoidance. Experiment 2 examined central neural systems activated by TMT. Odor-naive rats were acutely exposed to low or high levels of TMT or a novel nonaversive control odor and were perfused with fixative 60-90 min later. A subset of rats received retrograde neural tracer injections into the central nucleus of the amygdala (CeA) 7-10 days before odor exposure and perfusion. Brain sections were processed for dual-immunocytochemical detection of c-Fos and other markers to identify noradrenergic (NA) neurons, corticotropin-releasing hormone (CRH) neurons, and retrogradely labeled neurons projecting to the CeA. Significantly greater proportions of medullary and pontine NA neurons, hypothalamic CRH neurons, and CeA-projecting neurons were activated in rats exposed to TMT compared with activation in rats exposed to the nonaversive control odor. Thus the ability of TMT to support conditioned avoidance behavior is correlated with significant odor-induced recruitment of hypothalamic CRH neurons and brain stem viscerosensory inputs to the CeA.


Asunto(s)
Reacción de Prevención/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Sistema Límbico/efectos de los fármacos , Red Nerviosa/efectos de los fármacos , Sensación/efectos de los fármacos , Gusto/efectos de los fármacos , Tiazoles/farmacología , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/fisiología , Animales , Axones/fisiología , Tronco Encefálico/fisiología , Hormona Liberadora de Corticotropina/metabolismo , Hipotálamo/citología , Inmunohistoquímica , Sistema Límbico/citología , Masculino , Red Nerviosa/citología , Neuronas/fisiología , Norepinefrina/fisiología , Odorantes , Puente/citología , Puente/fisiología , Proteínas Proto-Oncogénicas c-fos/fisiología , Ratas , Ratas Sprague-Dawley
11.
J Neurosci ; 23(31): 10084-92, 2003 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-14602823

RESUMEN

Behavioral, autonomic, and endocrine outputs of the CNS are subject to important feedback modulation by viscerosensory signals that are conveyed initially to the hindbrain nucleus of the solitary tract (NST). In the present study, noradrenergic (NA) neurons [i.e., those that express the NA synthetic enzyme dopamine beta hydroxylase (DbH)] in the caudal NST were lesioned to determine their role in mediating anorexic responses to gastric stimulation and in conveying gastric sensory signals to the hypothalamus and amygdala. For this purpose, saporin toxin conjugated to an antibody against DbH was microinjected bilaterally into the caudal NST in adult rats. Control rats received similar microinjections of vehicle. Several weeks later, rats were tested for the ability of systemic cholecystokinin octapeptide (CCK) (0 or 10 microg/kg) to inhibit food intake. CCK-induced anorexia was significantly attenuated in toxin-treated rats. Rats subsequently were used in a terminal cFos study to determine central neural activation patterns after systemic CCK or vehicle and to evaluate lesion extent. Toxin-induced loss of DbH-positive NST neurons was positively correlated with loss of CCK-induced anorexia. Hypothalamic cFos expression was markedly attenuated in lesioned rats after CCK treatment, whereas CCK-induced neural activation in the parabrachial nucleus and amygdala appeared normal. These findings suggest that hindbrain NA neurons are an integral component of brainstem circuits that mediate CCK-induced anorexia and also are necessary for hypothalamic but not parabrachial or amygdala responses to gastric sensory stimulation.


Asunto(s)
Anorexia/fisiopatología , Sistema Nervioso Central/metabolismo , Norepinefrina/metabolismo , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Rombencéfalo/fisiología , Aferentes Viscerales/fisiología , Amígdala del Cerebelo/fisiología , Animales , Anorexia/inducido químicamente , Colecistoquinina/farmacología , Dopamina beta-Hidroxilasa/antagonistas & inhibidores , Dopamina beta-Hidroxilasa/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Hipotálamo/fisiología , Inmunotoxinas/farmacología , Masculino , Microinyecciones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Puente/efectos de los fármacos , Puente/fisiología , Ratas , Ratas Sprague-Dawley , Núcleo Solitario/efectos de los fármacos , Núcleo Solitario/fisiología , Aferentes Viscerales/efectos de los fármacos
12.
Am J Physiol Regul Integr Comp Physiol ; 285(5): R1037-45, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14557235

RESUMEN

Results from previous studies indicate that oxytocin (OT)-containing neural pathways are activated in laboratory rats after systemic administration of CCK or d-fenfluramine and that centrally released OT may participate in the anorexigenic effects of these treatments. To explore the relationship between feeding behavior and OT function, the effects of CCK and d-fenfluramine on feeding and central c-Fos expression were compared in wild-type (OT+/+) and OT-deficient mice (OT-/-) of C57BL/6 background. Male OT+/+ and OT-/- mice were administered saline or CCK (1, 3, or 10 microg/kg ip) after overnight food deprivation. Saline-treated OT+/+ and OT-/- mice consumed equivalent amounts of food after an overnight fast. CCK inhibited deprivation-induced food intake in a dose-dependent manner to a similar extent in both genotypes. CCK treatment also induced similar hindbrain and forebrain patterns of increased c-Fos expression in mice of both genotypes. After treatment with d-fenfluramine (10 mg/kg ip), both OT+/+ and OT-/- mice consumed significantly less food than untreated controls, with no difference between genotypes. We conclude that OT signaling pathways are unnecessary for the anorexigenic effects of systemically administered CCK and d-fenfluramine in C57BL/6 mice.


Asunto(s)
Colecistoquinina/farmacología , Ingestión de Alimentos/efectos de los fármacos , Fenfluramina/farmacología , Oxitocina/genética , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Animales , Ingestión de Alimentos/fisiología , Expresión Génica/efectos de los fármacos , Genotipo , Hipotálamo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Proteínas Proto-Oncogénicas c-fos/genética , Transducción de Señal/fisiología , Nervio Vago/fisiología
13.
Physiol Behav ; 79(1): 65-70, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12818710

RESUMEN

The hypothalamus is critically involved in energy homeostasis and is an appropriate focus for research investigating the central neural underpinnings of obesity, anorexia and normal food intake. However, little is known regarding pathways and mechanisms that convey relevant hypothalamic signals to the brainstem circuits that ultimately control ingestive behavior. This brief review highlights work investigating the postnatal development of hypothalamic inputs to the hindbrain dorsal vagal complex (DVC). Research findings indicate that these inputs are both structurally and functionally immature in newborn rats. The progressive postnatal maturation of descending projections to the DVC occurs in concert with newly emerging physiological and behavioral responses to osmotic dehydration, which inhibits gastric emptying and food intake in adult animals but not in neonates. The postnatal emergence of other intake controls might also reflect progressive engagement of DVC neural circuits, whose intrinsic components and output pathways are envisioned as being critical for initiating and terminating ingestive behavior.


Asunto(s)
Envejecimiento/fisiología , Apetito/fisiología , Conducta Alimentaria/fisiología , Hipotálamo/fisiología , Nervio Vago/fisiología , Animales , Animales Recién Nacidos , Mapeo Encefálico , Ingestión de Líquidos/fisiología , Hipotálamo/anatomía & histología , Ganglio Nudoso/anatomía & histología , Ganglio Nudoso/fisiología , Ratas , Rombencéfalo/anatomía & histología , Rombencéfalo/fisiología , Nervio Vago/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA