Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Plant Sci ; 11: 825, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670317

RESUMEN

The use of auxins to improve the vase life of cut flowers is very limited. Previous studies demonstrated that a pulse treatment of Red Cestrum (Cestrum elegans Schlecht.) cut flowers with 2,4-dichlorophenoxyacetic acid (2,4-D) significantly reduced floret bud abscission, whereas 1-naphthaleneacetic acid (NAA) was ineffective. This difference resulted, at least in part, from the higher acropetal transport capability of 2,4-D compared to that of NAA. The present research focused on examining the factors affecting the acropetal transport, and hence the efficacy of the two auxins in reducing floret bud abscission of Red Cestrum cut flowers. We assumed that the differential acropetal transport capability of the two auxins results from the difference in their dissociation constants (pKa), with values of 2.75 and 4.23 for 2,4-D and NAA, respectively, which affects their pH-dependent physicochemical properties. Thus, increasing the pH of the pulsing solution above the pKa of both auxins might improve their acropetal movement. Indeed, the results of the present research show that raising the pH of the pulsing solution to pH 7.0 and above improved the efficacy of the two auxins in reducing floret bud abscission, with a higher effect on 2,4-D than that on NAA. Raising the pH of the pulsing solution decreased the adsorption and/or uptake of the two auxins by the cells adjacent to the xylem vessels, leading to an increase in their acropetal transport. The high pH of the pulsing solution increased the dissociation and hence decreased the lipophilicity of the auxin molecules, leading to improved acropetal movement. This effect was corroborated by the significant reduction in their 1-octanol/water partition coefficient (K OW ) values with the increase in the pH. A significant increase in the CeIAA1 transcript level was obtained in response to 2,4-D pulsing at pH 7.0 and 8.25 and to NAA pulsing at pH 8.25, indicating that the acropetally transported auxins were taken up by the cells under these conditions. Our data suggest that raising the pH of the pulsing solution would significantly contribute to the increased efficacy of auxins in improving the vase life of cut flowers.

2.
J Exp Bot ; 66(5): 1355-68, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25504336

RESUMEN

In vivo changes in the cytosolic pH of abscission zone (AZ) cells were visualized using confocal microscopic detection of the fluorescent pH-sensitive and intracellularly trapped dye, 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF), driven by its acetoxymethyl ester. A specific and gradual increase in the cytosolic pH of AZ cells was observed during natural abscission of flower organs in Arabidopsis thaliana and wild rocket (Diplotaxis tenuifolia), and during flower pedicel abscission induced by flower removal in tomato (Solanum lycopersicum Mill). The alkalization pattern in the first two species paralleled the acceleration or inhibition of flower organ abscission induced by ethylene or its inhibitor 1-methylcyclopropene (1-MCP), respectively. Similarly, 1-MCP pre-treatment of tomato inflorescence explants abolished the pH increase in AZ cells and pedicel abscission induced by flower removal. Examination of the pH changes in the AZ cells of Arabidopsis mutants defective in both ethylene-induced (ctr1, ein2, eto4) and ethylene-independent (ida, nev7, dab5) abscission pathways confirmed these results. The data indicate that the pH changes in the AZ cells are part of both the ethylene-sensitive and -insensitive abscission pathways, and occur concomitantly with the execution of organ abscission. pH can affect enzymatic activities and/or act as a signal for gene expression. Changes in pH during abscission could occur via regulation of transporters in AZ cells, which might affect cytosolic pH. Indeed, four genes associated with pH regulation, vacuolar H(+)-ATPase, putative high-affinity nitrate transporter, and two GTP-binding proteins, were specifically up-regulated in tomato flower AZ following abscission induction, and 1-MCP reduced or abolished the increased expression.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Brassicaceae/crecimiento & desarrollo , Citosol/efectos de los fármacos , Flores/crecimiento & desarrollo , Solanum lycopersicum/crecimiento & desarrollo , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Brassicaceae/química , Brassicaceae/genética , Brassicaceae/metabolismo , Ciclopropanos/metabolismo , Citosol/química , Citosol/metabolismo , Etilenos/metabolismo , Flores/química , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Concentración de Iones de Hidrógeno , Solanum lycopersicum/química , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Protoplasma ; 248(4): 785-97, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21207085

RESUMEN

Plants are an infinite source of bioactive compounds. We screened the Israeli flora for compounds that interfere with the organization of the actin cytoskeleton. We found an activity in lipidic extract from Iris germanica that was able to increase HeLa cell area and adhesion and augment the formation of actin stress fibers. This effect was not observed when Ref52 fibroblasts were tested and was not the result of disruption of microtubules. Further, the increase in cell area was Rac1-dependent, and the iris extract led to slight Rac activation. Inhibitor of RhoA kinase did not interfere with the ability of the iris extract to increase HeLa cell area. The increase in HeLa cell area in the presence of iris extract was accompanied by impairment of cell migration and arrest of the cell cycle at G1 although the involvement of Rac1 in these processes is not clear. Biochemical verification of the extract based on activity-mediated fractionation and nuclear magnetic resonance analysis revealed that the active compounds belong to the group of iridals, a known group of triterpenoid. Purified iripallidal was able to increase cell area of both HeLa and SW480 cells.


Asunto(s)
Citoesqueleto de Actina/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Género Iris/química , Triterpenos/farmacología , Proteína de Unión al GTP rac1/metabolismo , Acroleína/análogos & derivados , Acroleína/aislamiento & purificación , Acroleína/farmacología , Amidas/farmacología , Animales , Adhesión Celular , Tamaño de la Célula , Ciclohexanoles/aislamiento & purificación , Ciclohexanoles/farmacología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Citometría de Flujo , Puntos de Control de la Fase G1 del Ciclo Celular , Células HeLa , Humanos , Espectroscopía de Resonancia Magnética , Extractos Vegetales/química , Extractos Vegetales/farmacología , Piridinas/farmacología , Ratas , Rizoma/química , Transfección , Triterpenos/química , Proteína de Unión al GTP rhoA/metabolismo
4.
Ann Bot ; 101(2): 249-59, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17591611

RESUMEN

BACKGROUND AND AIMS: A previous study showed that the relative effectiveness of 2,4-dichlorophenoxyacetic acid (2,4-D) compared with that of 1-naphthaleneacetic acid (NAA) in reducing floret bud abscission in cestrum (Cestrum elegans) cut flowers was due to its acropetal transport. The aim of the present study was to examine if the differential effect of these auxins on floret abscission is reflected in the expression of Aux/IAA genes in the floret abscission zone (AZ). METHODS: cDNAs were isolated by PCR-based cloning from the floret AZ of auxin-treated cut flowers. The expression patterns of the cDNAs in various tissues and the effect of indole-3-acetic acid (IAA), applied with or without cycloheximide, on their expression in the floret AZ were examined by northern blot analysis. The regulation of transcript accumulation in the floret AZ in response to NAA or 2,4-D was measured by real-time PCR during auxin pulsing of cut flowers and vase life, concomitantly with floret abscission. KEY RESULTS: Six isolated cDNAs were identified to represent Aux/IAA homologous genes, designated as Cestrum elegans (Ce)-IAA1 to Ce-IAA6. Four Ce-IAA genes were characterized as early auxin-responsive genes (ARGs), and two (Ce-IAA1 and Ce-IAA5) as late ARGs. Only Ce-IAA5 was AZ-specific in floret buds. A temporal regulation of Ce-IAA transcript levels in the floret AZ was found, with 2,4-D inducing higher expression levels than NAA in floret buds. These Ce-IAA expression levels were negatively correlated with floret abscission. CONCLUSIONS: The differential transport characteristics of NAA and 2,4-D in cestrum cut flowers were reflected in differential activation of the Ce-IAA genes identified in the floret AZ. Therefore, Aux/IAA genes can be used as molecular markers to measure auxin activity, which reflects free auxin level in the AZ. Two of the identified genes, Ce-IAA1 and Ce-IAA5, may also have a regulatory role in abscission.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/farmacología , Cestrum/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Ácidos Naftalenoacéticos/farmacología , Secuencia de Aminoácidos , Cestrum/efectos de los fármacos , Clonación Molecular , Cicloheximida/farmacología , ADN Complementario/genética , Flores/efectos de los fármacos , Flores/genética , Perfilación de la Expresión Génica , Datos de Secuencia Molecular , Especificidad de Órganos/efectos de los fármacos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico
5.
Plant Physiol ; 141(4): 1306-15, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16766672

RESUMEN

Yield reduction caused by late application of glyphosate to glyphosate-resistant cotton (Gossypium hirsutum; GRC) expressing CP4 5-enol-pyruvylshikmate-3-P synthase under the cauliflower mosaic virus-35S promoter has been attributed to male sterility. This study was aimed to elucidate the factors and mechanisms involved in this phenomenon. Western and tissue-print blots demonstrated a reduced expression of the transgene in anthers of GRC compared to ovules of the same plants. Glyphosate application to GRC grown at a high temperature regime after the initiation of flower buds caused a complete loss of pollen viability and inhibition of anther dehiscence, while at a moderate temperature regime only 50% of the pollen grains were disrupted and anther dehiscence was normal. Glyphosate-damaged anthers exhibited a change in the deposition of the secondary cell wall thickenings (SWT) in the endothecium cells, from the normal longitudinal orientation to a transverse orientation, and hindered septum disintegration. These changes occurred only at the high temperature regime. The reorientation of SWT in GRC was accompanied by a similar change in microtubule orientation. A similar reorientation of microtubules was also observed in Arabidopsis (Arabidopsis thaliana) seedlings expressing green fluorescent protein tubulin (tubulin alpha 6) following glyphosate treatment. Glyphosate treatment induced the accumulation of high levels of indole-3-acetic acid in GRC anthers. Cotton plants treated with 2,4-dichlorophenoxyacetic acid had male sterile flowers, with SWT abnormalities in the endothecium layer similar to those observed in glyphosate-treated plants. Our data demonstrate that glyphosate inhibits anther dehiscence by inducing changes in the microtubule and cell wall organization in the endothecium cells, which are mediated by auxin.


Asunto(s)
Pared Celular/metabolismo , Citoesqueleto/metabolismo , Flores/crecimiento & desarrollo , Glicina/análogos & derivados , Gossypium/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Temperatura , Ácido 2,4-Diclorofenoxiacético/farmacología , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico/efectos de los fármacos , Caulimovirus/genética , Flores/efectos de los fármacos , Flores/metabolismo , Glicina/farmacología , Gossypium/anatomía & histología , Gossypium/genética , Proteínas Fluorescentes Verdes/análisis , Infertilidad Vegetal/fisiología , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/fisiología , Polen/efectos de los fármacos , Polen/crecimiento & desarrollo , Polen/metabolismo , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/análisis , Reproducción/efectos de los fármacos , Rhizobium/genética , Tubulina (Proteína)/análisis , Tubulina (Proteína)/metabolismo , Glifosato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA