Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nutrients ; 14(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35893905

RESUMEN

The imbalance in osteoblast (OB)-dependent bone formation in favor of osteoclast (OC)-dependent bone resorption is the main cause of loss of tissue mineral mass during bone remodeling leading to osteoporosis conditions. Thus, the suppression of OC activity together with the improvement in the OB activity has been proposed as an effective therapy for maintaining bone mass during aging. We tested the new dietary product, KYMASIN UP containing standardized Withania somnifera, Silybum marianum and Trigonella foenum-graecum herbal extracts or the single extracts in in vitro models mimicking osteoclastogenesis (i.e., RAW 264.7 cells treated with RANKL, receptor activator of nuclear factor kappa-Β ligand) and OB differentiation (i.e., C2C12 myoblasts treated with BMP2, bone morphogenetic protein 2). We found that the dietary product reduces RANKL-dependent TRAP (tartrate-resistant acid phosphatase)-positive cells (i.e., OCs) formation and TRAP activity, and down-regulates osteoclastogenic markers by reducing Src (non-receptor tyrosine kinase) and p38 MAPK (mitogen-activated protein kinase) activation. Withania somnifera appears as the main extract responsible for the anti-osteoclastogenic effect of the product. Moreover, KYMASIN UP maintains a physiological release of the soluble decoy receptor for RANKL, OPG (osteoprotegerin), in osteoporotic conditions and increases calcium mineralization in C2C12-derived OBs. Interestingly, KYMASIN UP induces differentiation in human primary OB-like cells derived from osteoporotic subjects. Based on our results, KYMASIN UP or Withania somnifera-based dietary supplements might be suggested to reverse the age-related functional decline of bone tissue by re-balancing the activity of OBs and OCs, thus improving the quality of life in the elderly and reducing social and health-care costs.


Asunto(s)
Productos Biológicos , Resorción Ósea , Suplementos Dietéticos , Osteogénesis , Animales , Productos Biológicos/farmacología , Resorción Ósea/tratamiento farmacológico , Diferenciación Celular , Humanos , Ratones , Osteoblastos/metabolismo , Osteoclastos , Osteogénesis/efectos de los fármacos , Ligando RANK/metabolismo , Células RAW 264.7 , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
2.
Nutrients ; 13(1)2020 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-33375229

RESUMEN

Background: Muscle atrophy, i.e., the loss of skeletal muscle mass and function, is an unresolved problem associated with aging (sarcopenia) and several pathological conditions. The imbalance between myofibrillary protein breakdown (especially the adult isoforms of myosin heavy chain, MyHC) and synthesis, and the reduction of muscle regenerative potential are main causes of muscle atrophy. Methods: Starting from one-hundred dried hydroalcoholic extracts of medical plants, we identified those able to contrast the reduction of C2C12 myotube diameter in well-characterized in vitro models mimicking muscle atrophy associated to inflammatory states, glucocorticoid treatment or nutrient deprivation. Based on their ability to rescue type II MyHC (MyHC-II) expression in atrophying conditions, six extracts with different phytochemical profiles were selected, mixed in groups of three, and tested on atrophic myotubes. The molecular mechanism underpinning the effects of the most efficacious formulation, and its efficacy on myotubes obtained from muscle biopsies of young and sarcopenic subjects were also investigated. Results: We identified WST (Withania somnifera, Silybum marianum, Trigonella foenum-graecum) formulation as extremely efficacious in protecting C2C12 myotubes against MyHC-II degradation by stimulating Akt (protein kinase B)-dependent protein synthesis and p38 MAPK (p38 mitogen-activated protein kinase)/myogenin-dependent myoblast differentiation. WST sustains trophism in C2C12 and young myotubes, and rescues the size, developmental MyHC expression and myoblast fusion in sarcopenic myotubes. Conclusion: WST strongly counteracts muscle atrophy associated to different conditions in vitro. The future validation in vivo of our results might lead to the use of WST as a food supplement to sustain muscle mass in diffuse atrophying conditions, and to reverse the age-related functional decline of human muscles, thus improving people quality of life and reducing social and health-care costs.


Asunto(s)
Atrofia Muscular/tratamiento farmacológico , Fitoterapia/métodos , Sarcopenia/tratamiento farmacológico , Silybum marianum/química , Trigonella/química , Withania/química , Adulto , Anciano , Animales , Biopsia con Aguja , Línea Celular , Suplementos Dietéticos , Humanos , Ratones , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Extractos Vegetales/administración & dosificación , Plantas Medicinales/química
3.
Cell Death Differ ; 24(12): 2077-2088, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28885620

RESUMEN

Muscles of sarcopenic people show hypotrophic myofibers and infiltration with adipose and, at later stages, fibrotic tissue. The origin of infiltrating adipocytes resides in fibro-adipogenic precursors and nonmyogenic mesenchymal progenitor cells, and in satellite cells, the adult stem cells of skeletal muscles. Myoblasts and brown adipocytes share a common Myf5+ progenitor cell: the cell fate depends on levels of bone morphogenetic protein 7 (BMP-7), a TGF-ß family member. S100B, a Ca2+-binding protein of the EF-hand type, is expressed at relatively high levels in myoblasts from sarcopenic humans and exerts anti-myogenic effects via NF-κB-dependent inhibition of MyoD, a myogenic transcription factor acting upstream of the essential myogenic factor, myogenin. Adipogenesis requires high levels of ROS, and myoblasts of sarcopenic subjects show elevated ROS levels. Here we show that: (1) ROS overproduction in myoblasts results in upregulation of S100B levels via NF-κB activation; and (2) ROS/NF-κB-induced accumulation of S100B causes myoblast transition into brown adipocytes. S100B activates an NF-κB/Ying Yang 1 axis that negatively regulates the promyogenic and anti-adipogenic miR-133 with resultant accumulation of the brown adipogenic transcription regulator, PRDM-16. S100B also upregulates BMP-7 via NF-κB/Ying Yang 1 with resultant BMP-7 autocrine activity. Interestingly, myoblasts from sarcopenic humans show features of brown adipocytes. We also show that S100B levels and NF-κB activity are elevated in brown adipocytes obtained by culturing myoblasts in adipocyte differentiation medium and that S100B knockdown or NF-κB inhibition in myoblast-derived brown adipocytes reconverts them into fusion-competent myoblasts. At last, interstitial cells and, unexpectedly, a subpopulation of myofibers in muscles of geriatric but not young mice co-express S100B and the brown adipocyte marker, uncoupling protein-1. These results suggest that S100B is an important intracellular molecular signal regulating Myf5+ progenitor cell differentiation into fusion-competent myoblasts or brown adipocytes depending on its levels.


Asunto(s)
Adipocitos Marrones/metabolismo , MicroARNs/metabolismo , Mioblastos/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo/fisiología , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Adipocitos Marrones/citología , Animales , Proteína Morfogenética Ósea 7/genética , Proteína Morfogenética Ósea 7/metabolismo , Humanos , Masculino , Ratones , MicroARNs/genética , Mioblastos/citología , Especies Reactivas de Oxígeno/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/genética , Transfección , Factor de Transcripción YY1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA