Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 13(2)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38397757

RESUMEN

Deficient wound healing is frequently observed in patients diagnosed with diabetes, a clinical complication that compromises mobility and leads to limb amputation, decreasing patient autonomy and family lifestyle. Fibroblasts are crucial for secreting the extracellular matrix (ECM) to pave the wound site for endothelial and keratinocyte regeneration. The biosynthetic pathways involved in collagen production and crosslinking are intimately related to fibroblast redox homeostasis. In this study, two sets of human dermic fibroblasts were cultured in normal (5 mM) and high (25 mM)-glucose conditions in the presence of 1 µM selenium, as sodium selenite (inorganic) and the two selenium amino acids (organic), Se-cysteine and Se-methionine, for ten days. We investigated the ultrastructural changes in the secreted ECM induced by these conditions using scanning electron microscopy (SEM). In addition, we evaluated the redox impact of these three compounds by measuring the basal state and real-time responses of the thiol-based HyPer biosensor expressed in the cytoplasm of these fibroblasts. Our results indicate that selenium compound supplementation pushed the redox equilibrium towards a more oxidative tone in both sets of fibroblasts, and this effect was independent of the type of selenium. The kinetic analysis of biosensor responses allowed us to identify Se-cysteine as the only compound that simultaneously improved the sensitivity to oxidative stimuli and augmented the disulfide bond reduction rate in high-glucose-cultured fibroblasts. The redox response profiles showed no clear association with the ultrastructural changes observed in matrix fibers secreted by selenium-treated fibroblasts. However, we found that selenium supplementation improved the ECM secreted by high-glucose-cultured fibroblasts according to endothelial migration assessed with a wound healing assay. Direct application of sodium selenite and Se-cysteine on purified collagen fibers subjected to glycation also improved cellular migration, suggesting that these selenium compounds avoid the undesired effect of glycation.

2.
Curr Pharm Des ; 26(12): 1365-1376, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31931693

RESUMEN

The ß-amyloid peptide (1-42) is a molecule capable of aggregating into neurotoxic structures that have been implicated as potential etiological factors of Alzheimer's Disease. The aim of this study was to evaluate the inhibition of ß-amyloid aggregation of ethyl acetate and ethanolic extracts obtained from Ugni molinae leaves on neurotoxic actions of ß-amyloid aggregates. Chemical analyses were carried out with the extracts in order to determine their phenolic profile and its quantification. Both extracts showed a tendency to reduce neuronal deaths caused by ß-amyloid. This tendency was inversely proportional to the evaluated concentrations. Moreover, the effect of EAE and ETE on ß-amyloid aggregation was studied by fluorimetric T Thioflavin assay and transmission electronic microscopy (TEM); the extracts showed a modulation in the aggregation process. Partly, it is believed that these effects can be attributed to the polyphenolic compounds present in the extracts.


Asunto(s)
Enfermedad de Alzheimer , Myrtaceae , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Humanos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fenoles/química , Extractos Vegetales/farmacología , Hojas de la Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA