Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gels ; 9(12)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38131909

RESUMEN

Hydrogels are three-dimensional (3D) water-swellable polymeric matrices that are used extensively in tissue engineering and drug delivery. Hydrogels can be conformed into any desirable shape using 3D bio-printing, making them suitable for personalized treatment. Among the different 3D bio-printing techniques, digital light processing (DLP)-based printing offers the advantage of quickly fabricating high resolution structures, reducing the chances of cell damage during the printing process. Here, we have used DLP to 3D bio-print biocompatible gelatin methacrylate (GelMA) scaffolds intended for bone repair. GelMA is biocompatible, biodegradable, has integrin binding motifs that promote cell adhesion, and can be crosslinked easily to form hydrogels. However, GelMA on its own is incapable of promoting bone repair and must be supplemented with pharmaceutical molecules or growth factors, which can be toxic or expensive. To overcome this limitation, we introduced zinc-based metal-organic framework (MOF) nanoparticles into GelMA that can promote osteogenic differentiation, providing safer and more affordable alternatives to traditional methods. Incorporation of this nanoparticle into GelMA hydrogel has demonstrated significant improvement across multiple aspects, including bio-printability, and favorable mechanical properties (showing a significant increase in the compressive modulus from 52.14 ± 19.42 kPa to 128.13 ± 19.46 kPa with the addition of ZIF-8 nanoparticles). The designed nanocomposite hydrogels can also sustain drug (vancomycin) release (maximum 87.52 ± 1.6% cumulative amount) and exhibit a remarkable ability to differentiate human adipose-derived mesenchymal stem cells toward the osteogenic lineage. Furthermore, the formulated MOF-integrated nanocomposite hydrogel offers the unique capability to coat metallic implants intended for bone healing. Overall, the remarkable printability and coating ability displayed by the nanocomposite hydrogel presents itself as a promising candidate for drug delivery, cell delivery and bone tissue engineering applications.

2.
Compend Contin Educ Dent ; 38(7): e1-e4, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28727468

RESUMEN

This study examined the influence of finishing procedures on the surface roughness of different formulations of resin-modified glass ionomers (RMGIs) available in capsules compared with standard resin composites (RCs). Disc samples of three RMGIs and two RCs were fabricated using a metal mold (5 mm x 1.5 mm). Samples were randomly divided into seven groups (N = 10) and subjected to finishing and polishing procedures using a combination of carbide or diamond burs, followed by either rubber points or aluminum-oxide discs. Three different regions of each sample were analyzed using a contact profilometer to determine the average roughness (Ra). The main surface roughness was calculated using a two-way analysis of variance (ANOVA) and the Bonferroni correction for multiple comparisons. A dual-stage combination of a fine carbide bur followed by the use of the finest two grits of aluminum-oxide discs was found to produce the smoothest finished and polished surface. the smoothest surfaces were found to be on the two RCs and one of the RMGIs.


Asunto(s)
Resinas Acrílicas , Resinas Compuestas , Materiales Dentales , Pulido Dental/métodos , Dióxido de Silicio , Óxido de Aluminio , Resinas Compuestas/química , Materiales Dentales/química , Pulido Dental/instrumentación , Diamante , Ensayo de Materiales , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA