Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Rep ; 34(11): 108867, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33730568

RESUMEN

The firing activity of dorso-medial-striatal-cholinergic interneurons (dmCINs) is a neural correlate of classical conditioning. Tonically active, they pause in response to salient stimuli, mediating acquisition of predictive cues/outcome associations. Cortical and thalamic inputs are typical of the rather limited knowledge about underlying circuitry contributing to this function. Here, we dissect the midbrain GABA and glutamate-to-dmCIN pathways and evaluate how they influence conditioned behavior. We report that midbrain neurons discriminate auditory cues and encode the association of a predictive stimulus with a footshock. Furthermore, GABA and glutamate cells form selective monosynaptic contacts onto dmCINs and di-synaptic ones via the parafascicular thalamus. Pathway-specific inhibition of each sub-circuit produces differential impairments of fear-conditioned learning. Finally, Vglut2-expressing cells discriminate between CSs although Vgat-positive neurons associate the predictive cue with the outcome. Overall, these data suggest that each component of the network carries information pertinent to sub-domains of the behavioral strategy.


Asunto(s)
Condicionamiento Clásico , Neuronas GABAérgicas/fisiología , Glutamatos/metabolismo , Aprendizaje , Área Tegmental Ventral/fisiología , Estimulación Acústica , Animales , Colina/metabolismo , Señales (Psicología) , Aprendizaje Discriminativo , Electrochoque , Miedo , Femenino , Interneuronas/fisiología , Masculino , Ratones Endogámicos C57BL , Sinapsis/fisiología , Tálamo/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
2.
Science ; 341(6153): 1517-21, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-24072922

RESUMEN

The growing prevalence of overeating disorders is a key contributor to the worldwide obesity epidemic. Dysfunction of particular neural circuits may trigger deviations from adaptive feeding behaviors. The lateral hypothalamus (LH) is a crucial neural substrate for motivated behavior, including feeding, but the precise functional neurocircuitry that controls LH neuronal activity to engage feeding has not been defined. We observed that inhibitory synaptic inputs from the extended amygdala preferentially innervate and suppress the activity of LH glutamatergic neurons to control food intake. These findings help explain how dysregulated activity at a number of unique nodes can result in a cascading failure within a defined brain network to produce maladaptive feeding.


Asunto(s)
Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Neuronas GABAérgicas/fisiología , Hipotálamo/fisiología , Adaptación Fisiológica , Amígdala del Cerebelo/fisiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Channelrhodopsins , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Mutantes , Obesidad/fisiopatología , Núcleos Septales/fisiología , Sinapsis/fisiología , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA