Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Theor Appl Genet ; 129(10): 1985-2001, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27497984

RESUMEN

KEY MESSAGE: The S-ribonuclease sequences of 16 S-alleles derived from diploid types of Solanum are presented. A phylogenetic analysis and partial phenotypic analysis support the conclusion that these are functional S-alleles. S-Ribonucleases (S-RNases) control the pistil specificity of the self-incompatibility (SI) response in the genus Solanum and several other members of the Solanaceae. The nucleotide sequences of S-RNases corresponding to a large number of S-alleles or S-haplotypes have been characterised. However, surprisingly, few S-RNase sequences are available for potato species. The identification of new S-alleles in diploid potato species is desirable as these stocks are important sources of traits such as biotic and abiotic resistance. S-RNase sequences are reported here from three distinct diploid types of potato: cultivated Solanum tuberosum Group Phureja, S. tuberosum Group Stenotomum, and the wild species Solanum okadae. Partial S-RNase sequences were obtained from pistil RNA by RT-PCR or 3'RACE (Rapid Amplification of cDNA Ends) using a degenerate primer. Full-length sequences were obtained for two alleles by 5'RACE. Database searches with these sequences identified 16 S-RNases in total, all of which are novel. The sequence analysis revealed all the expected features of functional S-RNases. Phylogenetic analysis with selected published S-RNase and S-like-RNase sequences from the Solanaceae revealed extensive trans-generic evolution of the S-RNases and a clear distinction from S-like-RNases. Pollination tests were used to confirm the self-incompatibility status and cross-compatibility relationships of the S. okadae accessions. All the S. okadae accessions were found to be self-incompatible as expected with crosses amongst them exhibiting both cross-compatibility and semi-compatibility consistent with the S-genotypes determined from the S-RNase sequence data. The progeny analysis of four semi-compatible crosses examined by allele-specific PCR provided further confirmation that these are functional S-RNases.


Asunto(s)
Alelos , Proteínas de Plantas/genética , Ribonucleasas/genética , Autoincompatibilidad en las Plantas con Flores/genética , Solanum tuberosum/genética , Secuencia de Aminoácidos , ADN de Plantas/genética , Diploidia , Evolución Molecular , Flores/genética , Variación Genética , Genotipo , Fenotipo , Filogenia , Polinización , Alineación de Secuencia , Análisis de Secuencia de ADN , Solanum/enzimología , Solanum/genética , Solanum tuberosum/enzimología
2.
Plant Cell ; 17(1): 37-51, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15598801

RESUMEN

Recently, an S haplotype-specific F-box (SFB) gene has been proposed as a candidate for the pollen-S specificity gene of RNase-mediated gametophytic self-incompatibility in Prunus (Rosaceae). We have examined two pollen-part mutant haplotypes of sweet cherry (Prunus avium). Both were found to retain the S-RNase, which determines stylar specificity, but one (S3' in JI 2434) has a deletion including the haplotype-specific SFB gene, and the other (S4' in JI 2420) has a frame-shift mutation of the haplotype-specific SFB gene, causing amino acid substitutions and premature termination of the protein. The loss or significant alteration of this highly polymorphic gene and the concomitant loss of pollen self-incompatibility function provides compelling evidence that the SFB gene encodes the pollen specificity component of self-incompatibility in Prunus. These loss-of-function mutations are inconsistent with SFB being the inactivator of non-self S-RNases and indicate the presence of a general inactivation mechanism, with SFB conferring specificity by protecting self S-RNases from inactivation.


Asunto(s)
Secuencias F-Box/genética , Eliminación de Gen , Mutación/genética , Polen/genética , Prunus/genética , Reproducción Asexuada/genética , Sustitución de Aminoácidos/genética , Codón sin Sentido/genética , Mutación del Sistema de Lectura/genética , Regulación de la Expresión Génica de las Plantas/genética , Silenciador del Gen/fisiología , Haplotipos/genética , Datos de Secuencia Molecular , Ribonucleasas/genética , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Elementos Silenciadores Transcripcionales/genética
3.
Plant Cell ; 16(9): 2307-22, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15308757

RESUMEN

Recently, we have provided evidence that the polymorphic self-incompatibility (S) locus-encoded F-box (SLF) protein AhSLF-S(2) plays a role in mediating a selective S-RNase destruction during the self-incompatible response in Antirrhinum hispanicum. To investigate its role further, we first transformed a transformation-competent artificial chromosome clone (TAC26) containing both AhSLF-S(2) and AhS(2)-RNase into a self-incompatible (SI) line of Petunia hybrida. Molecular analyses showed that both genes are correctly expressed in pollen and pistil in four independent transgenic lines of petunia. Pollination tests indicated that all four lines became self-compatible because of the specific loss of the pollen function of SI. This alteration was transmitted stably into the T1 progeny. We then transformed AhSLF-S(2) cDNA under the control of a tomato (Lycopersicon esculentum) pollen-specific promoter LAT52 into the self-incompatible petunia line. Molecular studies revealed that AhSLF-S(2) is specifically expressed in pollen of five independent transgenic plants. Pollination tests showed that they also had lost the pollen function of SI. Importantly, expression of endogenous SLF or SLF-like genes was not altered in these transgenic plants. These results phenocopy a well-known phenomenon called competitive interaction whereby the presence of two different pollen S alleles within pollen leads to the breakdown of the pollen function of SI in several solanaceaous species. Furthermore, we demonstrated that AhSLF-S(2) physically interacts with PhS(3)-RNase from the P. hybrida line used for transformation. Together with the recent demonstration of PiSLF as the pollen determinant in P. inflata, these results provide direct evidence that the polymorphic SLF including AhSLF-S(2) controls the pollen function of S-RNase-based self-incompatibility.


Asunto(s)
Secuencias F-Box/genética , Petunia/metabolismo , Proteínas de Plantas/metabolismo , Polen/metabolismo , Ribonucleasas/metabolismo , Secuencia de Aminoácidos/genética , Antirrhinum/genética , Secuencia de Bases/genética , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Solanum lycopersicum/genética , Datos de Secuencia Molecular , Péptidos/genética , Péptidos/metabolismo , Petunia/genética , Fenotipo , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Polen/genética , Regiones Promotoras Genéticas/genética , Reproducción/genética , Ribonucleasas/genética , Homología de Secuencia de Aminoácido , Transformación Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA