Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomedicines ; 10(7)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35884856

RESUMEN

Multicore magnetic nanoparticles of manganese ferrite were prepared using carboxymethyl dextran as an agglutinating compound or by an innovative method using melamine as a cross-coupling agent. The nanoparticles prepared using melamine exhibited a flower-shape structure, a saturation magnetization of 6.16 emu/g and good capabilities for magnetic hyperthermia, with a specific absorption rate (SAR) of 0.14 W/g. Magnetoliposome-like structures containing the multicore nanoparticles were prepared, and their bilayer structure was confirmed by FRET (Förster Resonance Energy Transfer) assays. The nanosystems exhibited sizes in the range of 250-400 nm and a low polydispersity index. A new antitumor thienopyridine derivative, 7-[4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl]thieno[3,2-b]pyridine, active against HeLa (cervical carcinoma), MCF-7 (breast adenocarcinoma), NCI-H460 (non-small-cell lung carcinoma) and HepG2 (hepatocellular carcinoma) cell lines, was loaded in these nanocarriers, obtaining a high encapsulation efficiency of 98 ± 2.6%. The results indicate that the new magnetoliposomes can be suitable for dual cancer therapy (combined magnetic hyperthermia and chemotherapy).

2.
Molecules ; 25(24)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322297

RESUMEN

The potential of plant extracts as bioinsecticides has been described as a promising field of agricultural development. In this work, the extracts of Punica granatum (pomegranate), Phytolacca americana (American pokeweed), Glandora prostrata (shrubby gromwell), Ulex europaeus (gorce), Tagetes patula (French marigold), Camellia japonica red (camellia), Ruta graveolens (rue or herb-of-grace) were obtained, purified, and their activity against Spodoptera frugiperda (Sf9) insect cells was investigated. From the pool of over twenty extracts obtained, comprising different polarities and vegetable materials, less polar samples were shown to be more toxic towards the insect cell line Sf9. Among these, a dichloromethane extract of R. graveolens was capable of causing a loss of viability of over 50%, exceeding the effect of the commercial insecticide chlorpyrifos. This extract elicited chromatin condensation and the fragmentation in treated cells. Nanoencapsulation assays of the cytotoxic plant extracts in soybean liposomes and chitosan nanostructures were carried out. The nanosystems exhibited sizes lower or around 200 nm, low polydispersity, and generally high encapsulation efficiencies. Release assays showed that chitosan nanoemulsions provide a fast and total extract release, while liposome-based systems are suitable for a more delayed release. These results represent a proof-of-concept for the future development of bioinsecticide nanoformulations based on the cytotoxic plant extracts.


Asunto(s)
Agentes de Control Biológico/química , Plaguicidas/química , Extractos Vegetales/química , Hojas de la Planta/química , Animales , Camellia , Quitosano/química , Fabaceae , Insectos , Insecticidas/análisis , Liposomas/química , Lithospermum , Nanoestructuras , Phytolacca americana , Granada (Fruta) , Ruta , Solventes , Glycine max/efectos de los fármacos , Tagetes
3.
Materials (Basel) ; 13(4)2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32054053

RESUMEN

Multifunctional nanosystems combining magnetic and plasmonic properties are a promising approach for cancer therapy, allowing magnetic guidance and a local temperature increase. This capability can provide a triggered drug release and synergistic cytotoxic effect in cancer cells. In this work, nickel ferrite/gold nanoparticles were developed, including nickel ferrite magnetic nanoparticles decorated with plasmonic gold nanoparticles and core/shell nanostructures (with a nickel ferrite core and a gold shell). These nanoparticles were covered with a surfactant/lipid bilayer, originating liposome-like structures with diameters below 160 nm. The heating capacity of these systems, upon excitation with light above 600 nm wavelength, was assessed through the emission quenching of rhodamine B located in the lipid layer. The developed nanosystems show promising results for future applications in thermotherapy.

4.
Pharmaceutics ; 11(1)2018 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-30602683

RESUMEN

Multifunctional liposomes containing manganese ferrite/gold core/shell nanoparticles were developed. These magnetic/plasmonic nanoparticles were covered by a lipid bilayer or entrapped in liposomes, which form solid or aqueous magnetoliposomes as nanocarriers for simultaneous chemotherapy and phototherapy. The core/shell nanoparticles were characterized by UV/Visible absorption, X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and Superconducting Quantum Interference Device (SQUID). The magnetoliposomes were characterized by Dynamic Light Scattering (DLS) and TEM. Fluorescence-based techniques (FRET, steady-state emission, and anisotropy) investigated the incorporation of a potential anti-tumor drug (a thienopyridine derivative) in these nanosystems. The core/shell nanoparticles exhibit sizes of 25 ± 2 nm (from TEM), a plasmonic absorption band (λmax = 550 nm), and keep magnetic character. XRD measurements allowed for the estimation of 13.3 nm diameter for manganese ferrite core and 11.7 nm due to the gold shell. Aqueous magnetoliposomes, with hydrodynamic diameters of 152 ± 18 nm, interact with model membranes by fusion and are able to transport the anti-tumor compound in the lipid membrane, with a high encapsulation efficiency (EE (%) = 98.4 ± 0.8). Solid magnetoliposomes exhibit hydrodynamic diameters around 140 nm and also carry successfully the anticancer drug (with EE (%) = 91.2 ± 5.2), while also being promising as agents for phototherapy. The developed multifunctional liposomes can be promising as therapeutic agents for combined chemo/phototherapy.

5.
Colloids Surf B Biointerfaces ; 158: 460-468, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28732311

RESUMEN

Iron oxide nanoparticles, with diameters around 12nm, were synthesized by coprecipitation method. The magnetic properties indicate a superparamagnetic behavior with a coercive field of 9.7Oe and a blocking temperature of 118K. Both aqueous and solid magnetoliposomes containing magnetite nanoparticles have sizes below 150nm, suitable for biomedical applications. Interaction between both types of magnetoliposomes and models of biological membranes was proven. A new antitumor compound, a diarylurea derivative of thienopyridine, active against breast cancer, was incorporated in both aqueous and solid magnetoliposomes, being mainly located in the lipid membrane. A promising application of these magnetoliposomes in oncology is anticipated, allowing a combined therapeutic approach, using both chemotherapy and magnetic hyperthermia.


Asunto(s)
Compuestos Férricos/química , Liposomas/química , Nanopartículas de Magnetita/química , Neoplasias de la Mama , Humanos , Hipertermia Inducida , Piridinas/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA