Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Pharm ; 655: 124007, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38493844

RESUMEN

Gold core mesoporous silica shell (AuMSS) nanorods are multifunctional nanomedicines that can act simultaneously as photothermal, drug delivery, and bioimaging agents. Nevertheless, it is reported that once administrated, nanoparticles can be coated with blood proteins, forming a protein corona, that directly impacts on nanomedicines' circulation time, biodistribution, and therapeutic performance. Therefore, it become crucial to develop novel alternatives to improve nanoparticles' half-life in the bloodstream. In this work, Polyethylenimine (PEI) and Red blood cells (RBC)-derived membranes were combined for the first time to functionalize AuMSS nanorods and simultaneously load acridine orange (AO). The obtained results revealed that the RBC-derived membranes promoted the neutralization of the AuMSS' surface charge and consequently improved the colloidal stability and biocompatibility of the nanocarriers. Indeed, the in vitro data revealed that PEI/RBC-derived membranes' functionalization also improved the nanoparticles' cellular internalization and was capable of mitigating the hemolytic effects of AuMSS and AuMSS/PEI nanorods. In turn, the combinatorial chemo-photothermal therapy mediated by AuMSS/PEI/RBC_AO nanorods was able to completely eliminate HeLa cells, contrasting with the less efficient standalone therapies. Such data reinforce the potential of AuMSS nanomaterials to act simultaneously as photothermal and chemotherapeutic agents.


Asunto(s)
Antineoplásicos , Nanotubos , Neoplasias , Humanos , Células HeLa , Terapia Fototérmica , Membrana Eritrocítica , Dióxido de Silicio , Oro , Distribución Tisular , Fototerapia , Doxorrubicina/farmacología , Neoplasias/tratamiento farmacológico
2.
Biotechnol J ; 19(1): e2300019, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37706621

RESUMEN

Gold-based nanoparticles present excellent optical properties that propelled their widespread application in biomedicine, from bioimaging to photothermal applications. Nevertheless, commonly employed manufacturing methods for gold-based nanoparticles require long periods and laborious protocols that reduce cost-effectiveness and scalability. Herein, a novel methodology was used for producing gold-alginic acid nanohybrids (Au-Alg-NH) with photothermal capabilities. This was accomplished by promoting the in situ reduction and nucleation of gold ions throughout a matrix of alginic acid by using ascorbic acid. The results obtained reveal that the Au-Alg-NHs present a uniform size distribution and a spike-like shape. Moreover, the nanomaterials were capable to mediate a temperature increase of ≈11°C in response to the irradiation with a near-infrared region (NIR) laser (808 nm, 1.7 W cm-2 ). The in vitro assays showed that Au-Alg-NHs were able to perform a NIR light-triggered ablation of cancer cells (MCF-7), being observed a reduction in the cell viability to ≈27%. Therefore, the results demonstrate that this novel methodology holds the potential for producing Au-Alg-NH with photothermal capacity and higher translatability to the clinical practice, namely for cancer therapy.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Neoplasias , Ácido Algínico , Oro , Terapia Fototérmica , Fototerapia , Nanopartículas del Metal/uso terapéutico , Neoplasias/terapia
3.
Acta Biomater ; 116: 105-137, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32911109

RESUMEN

The plasmonic photothermal properties of gold nanoparticles have been widely explored in the biomedical field to mediate a photothermal effect in response to the irradiation with an external light source. Particularly, in cancer therapy, the physicochemical properties of gold-based nanomaterials allow them to efficiently accumulate in the tumor tissue and then mediate the light-triggered thermal destruction of cancer cells with high spatial-temporal control. Nevertheless, the gold nanomaterials can be produced with different shapes, sizes, and organizations such as nanospheres, nanorods, nanocages, nanoshells, and nanoclusters. These gold nanostructures will present different plasmonic photothermal properties that can impact cancer thermal ablation. This review analyses the application of gold-based nanomaterials in cancer photothermal therapy, emphasizing the main parameters that affect its light-to-heat conversion efficiency and consequently the photothermal potential. The different shapes/organizations (clusters, shells, rods, stars, cages) of gold nanomaterials and the parameters that can be fine-tuned to improve the photothermal capacity are presented. Moreover, the gold nanostructures combination with other materials (e.g. silica, graphene, and iron oxide) or small molecules (e.g. indocyanine green and IR780) to improve the nanomaterials photothermal capacity is also overviewed.


Asunto(s)
Hipertermia Inducida , Nanopartículas del Metal , Nanoestructuras , Neoplasias , Oro , Humanos , Nanomedicina , Neoplasias/terapia , Fototerapia
4.
Colloids Surf B Biointerfaces ; 188: 110778, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31945632

RESUMEN

Gold-core mesoporous silica shell (AuMSS) nanorods unique physicochemical properties makes them versatile and promising nanomedicines for cancer photothermal therapy. Nevertheless, these nanomaterials present a reduced half-life in the blood and poor specificity towards the tumor tissue. Herein, d-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) and Hyaluronic Acid (HA) were combined for the first time to improve the AuMSS nanorods biological performance. The obtained results revealed that AuMSS surface functionalization induced the surface charge neutralization, from -28 ±â€¯10 mV to -3 ±â€¯5 mV and -10 ±â€¯4 mV for AuMSS-TPGS-HA (1:1) and (4:1) formulations, without impacting on nanomaterials' photothermal capacity. Moreover, the AuMSS functionalization improved the nanomaterials hemocompatibility and selectivity towards the cancer cells, particularly in the AuMSS-TPGS-HA (4:1) formulation. Furthermore, both formulations were able to mediate an on-demand photothermal effect, that induced the HeLa cancer cells death, confirming its potential for being applied as targeted multifunctional theragnostic nanomedicines.


Asunto(s)
Antineoplásicos/farmacología , Materiales Biocompatibles/farmacología , Fototerapia , Antineoplásicos/química , Materiales Biocompatibles/química , Supervivencia Celular/efectos de los fármacos , Oro/química , Oro/farmacología , Células HeLa , Humanos , Ácido Hialurónico/síntesis química , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Nanotubos/química , Tamaño de la Partícula , Polietilenglicoles/química , Polietilenglicoles/farmacología , Dióxido de Silicio/química , Dióxido de Silicio/farmacología , Succinatos/química , Succinatos/farmacología , Propiedades de Superficie , Vitamina E/química , Vitamina E/farmacología
5.
Int J Pharm ; 576: 118907, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31870955

RESUMEN

The combination of photothermal and chemo- therapies displays a high potential to increase the efficacy of the cancer treatments or even promote their eradication. In this study, the micromoulding and electrospraying techniques were combined to produce polyvinylpyrrolidone microneedles coated with chitosan and poly (vinyl alcohol) for mediating the delivery of doxorubicin and AuMSS nanorods (Dox@MicroN) to cancer cells. The microneedles' physicochemical characterization demonstrated that the electrospraying technique can be used to produce a layer-by-layer coating consisting of layers of doxorubicin-loaded chitosan and AuMSS enriched poly (vinyl alcohol). Further, the Dox@MicroN patches presented a good photothermal capacity leading to a temperature increase of 12 °C under near-infrared irradiation (808 nm, 1.7 W/cm-2 for 5 min), which in conjugation with the chitosan' pH sensitivity could be used to control the doxorubicin release. Moreover, the microneedles were able to penetrate the tumor-mimicking agarose gel and promote a layer dependent drug release. Additionally, the Dox@MicroN patches' capacity to simultaneously mediate the chemo- and photothermal-therapies rendered a superior cytotoxic effect against the cervical cancer cells. Overall, the Dox@MicroN patches demonstrated to be a simple macroscale delivery device that can be used to mediate the local administration of new drug-photothermal combinations, avoiding all the issues related to the systemic administration of anti-cancer therapeutics.


Asunto(s)
Antineoplásicos/administración & dosificación , Quitosano/química , Doxorrubicina/administración & dosificación , Alcohol Polivinílico/química , Neoplasias del Cuello Uterino/tratamiento farmacológico , Línea Celular , Línea Celular Tumoral , Liberación de Fármacos , Femenino , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Agujas , Fototerapia/métodos , Povidona/química
6.
Nanomedicine (Lond) ; 13(20): 2611-2627, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30334683

RESUMEN

AIM: Develop a new poly-2-ethyl-2-oxazoline (PEOZ)-based coating for doxorubicin-loaded gold-core mesoporous silica shell (AuMSS) nanorods application in cancer chemo-photothermal therapy. METHODS: PEOZ functionalized AuMSS nanorods were obtained through the chemical grafting on AuMSS of a PEOZ silane derivative. RESULTS: The PEOZ chemical grafting on the surface of AuMSS nanorods allowed the neutralization of nanodevices' surface charge, from -30 to -15 mV, which improved nanoparticles' biocompatibility, namely by decreasing the blood hemolysis to negligible levels. In vitro antitumoral studies revealed that the combined treatment mediated by the PEOZ-coated AuMSS nanorods result in a synergistic effect, allowing the complete eradication of cervical cancer cells. CONCLUSION: The application of the PEOZ coating improves the AuMSS nanorods performance as a multifunctional combinatorial therapy for cervical cancer.


Asunto(s)
Nanopartículas/administración & dosificación , Nanotubos/química , Neoplasias/tratamiento farmacológico , Poliaminas/administración & dosificación , Doxorrubicina/química , Oro/química , Humanos , Nanopartículas/química , Neoplasias/patología , Fototerapia , Poliaminas/química , Dióxido de Silicio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA