Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Elife ; 122023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37791662

RESUMEN

The lateral geniculate nucleus (LGN), a retinotopic relay center where visual inputs from the retina are processed and relayed to the visual cortex, has been proposed as a potential target for artificial vision. At present, it is unknown whether optogenetic LGN stimulation is sufficient to elicit behaviorally relevant percepts, and the properties of LGN neural responses relevant for artificial vision have not been thoroughly characterized. Here, we demonstrate that tree shrews pretrained on a visual detection task can detect optogenetic LGN activation using an AAV2-CamKIIα-ChR2 construct and readily generalize from visual to optogenetic detection. Simultaneous recordings of LGN spiking activity and primary visual cortex (V1) local field potentials (LFPs) during optogenetic LGN stimulation show that LGN neurons reliably follow optogenetic stimulation at frequencies up to 60 Hz and uncovered a striking phase locking between the V1 LFP and the evoked spiking activity in LGN. These phase relationships were maintained over a broad range of LGN stimulation frequencies, up to 80 Hz, with spike field coherence values favoring higher frequencies, indicating the ability to relay temporally precise information to V1 using light activation of the LGN. Finally, V1 LFP responses showed sensitivity values to LGN optogenetic activation that were similar to the animal's behavioral performance. Taken together, our findings confirm the LGN as a potential target for visual prosthetics in a highly visual mammal closely related to primates.


Asunto(s)
Optogenética , Tálamo , Animales , Tálamo/fisiología , Cuerpos Geniculados/fisiología , Visión Ocular , Neuronas/fisiología , Estimulación Luminosa , Vías Visuales/fisiología , Mamíferos
2.
Sci Adv ; 9(8): eade4687, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36812305

RESUMEN

Chronic wounds, particularly those associated with diabetes mellitus, represent a growing threat to public health, with additional notable economic impacts. Inflammation associated with these wounds leads to abnormalities in endogenous electrical signals that impede the migration of keratinocytes needed to support the healing process. This observation motivates the treatment of chronic wounds with electrical stimulation therapy, but practical engineering challenges, difficulties in removing stimulation hardware from the wound site, and absence of means to monitor the healing process create barriers to widespread clinical use. Here, we demonstrate a miniaturized wireless, battery-free bioresorbable electrotherapy system that overcomes these challenges. Studies based on a splinted diabetic mouse wound model confirm the efficacy for accelerated wound closure by guiding epithelial migration, modulating inflammation, and promoting vasculogenesis. Changes in the impedance provide means for tracking the healing process. The results demonstrate a simple and effective platform for wound site electrotherapy.


Asunto(s)
Diabetes Mellitus , Terapia por Estimulación Eléctrica , Ratones , Animales , Implantes Absorbibles , Impedancia Eléctrica , Cicatrización de Heridas , Modelos Animales de Enfermedad , Inflamación
3.
Science ; 376(6596): 1006-1012, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35617386

RESUMEN

Temporary postoperative cardiac pacing requires devices with percutaneous leads and external wired power and control systems. This hardware introduces risks for infection, limitations on patient mobility, and requirements for surgical extraction procedures. Bioresorbable pacemakers mitigate some of these disadvantages, but they demand pairing with external, wired systems and secondary mechanisms for control. We present a transient closed-loop system that combines a time-synchronized, wireless network of skin-integrated devices with an advanced bioresorbable pacemaker to control cardiac rhythms, track cardiopulmonary status, provide multihaptic feedback, and enable transient operation with minimal patient burden. The result provides a range of autonomous, rate-adaptive cardiac pacing capabilities, as demonstrated in rat, canine, and human heart studies. This work establishes an engineering framework for closed-loop temporary electrotherapy using wirelessly linked, body-integrated bioelectronic devices.


Asunto(s)
Implantes Absorbibles , Estimulación Cardíaca Artificial , Marcapaso Artificial , Cuidados Posoperatorios , Tecnología Inalámbrica , Animales , Perros , Frecuencia Cardíaca , Humanos , Cuidados Posoperatorios/instrumentación , Ratas
4.
J Vis Exp ; (176)2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34747395

RESUMEN

Peripheral nerve interfaces are frequently used in experimental neuroscience and regenerative medicine for a wide variety of applications. Such interfaces can be sensors, actuators, or both. Traditional methods of peripheral nerve interfacing must either tether to an external system or rely on battery power that limits the time frame for operation. With recent developments of wireless, battery-free, and fully implantable peripheral nerve interfaces, a new class of devices can offer capabilities that match or exceed those of their wired or battery-powered precursors. This paper describes methods to (i) surgically implant and (ii) wirelessly power and control this system in adult rats. The sciatic and phrenic nerve models were selected as examples to highlight the versatility of this approach. The paper shows how the peripheral nerve interface can evoke compound muscle action potentials (CMAPs), deliver a therapeutic electrical stimulation protocol, and incorporate a conduit for the repair of peripheral nerve injury. Such devices offer expanded treatment options for single-dose or repeated dose therapeutic stimulation and can be adapted to a variety of nerve locations.


Asunto(s)
Terapia por Estimulación Eléctrica , Nervios Periféricos , Animales , Suministros de Energía Eléctrica , Terapia por Estimulación Eléctrica/métodos , Nervios Periféricos/fisiología , Nervios Periféricos/cirugía , Nervio Frénico , Prótesis e Implantes , Ratas , Tecnología Inalámbrica
5.
Nat Mater ; 20(11): 1559-1570, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34326506

RESUMEN

Flexible electronic/optoelectronic systems that can intimately integrate onto the surfaces of vital organ systems have the potential to offer revolutionary diagnostic and therapeutic capabilities relevant to a wide spectrum of diseases and disorders. The critical interfaces between such technologies and living tissues must provide soft mechanical coupling and efficient optical/electrical/chemical exchange. Here, we introduce a functional adhesive bioelectronic-tissue interface material, in the forms of mechanically compliant, electrically conductive, and optically transparent encapsulating coatings, interfacial layers or supporting matrices. These materials strongly bond both to the surfaces of the devices and to those of different internal organs, with stable adhesion for several days to months, in chemistries that can be tailored to bioresorb at controlled rates. Experimental demonstrations in live animal models include device applications that range from battery-free optoelectronic systems for deep-brain optogenetics and subdermal phototherapy to wireless millimetre-scale pacemakers and flexible multielectrode epicardial arrays. These advances have immediate applicability across nearly all types of bioelectronic/optoelectronic system currently used in animal model studies, and they also have the potential for future treatment of life-threatening diseases and disorders in humans.


Asunto(s)
Implantes Absorbibles , Adhesivos , Animales , Conductividad Eléctrica , Electrónica
6.
Nat Commun ; 11(1): 5990, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239608

RESUMEN

Bioresorbable electronic stimulators are of rapidly growing interest as unusual therapeutic platforms, i.e., bioelectronic medicines, for treating disease states, accelerating wound healing processes and eliminating infections. Here, we present advanced materials that support operation in these systems over clinically relevant timeframes, ultimately bioresorbing harmlessly to benign products without residues, to eliminate the need for surgical extraction. Our findings overcome key challenges of bioresorbable electronic devices by realizing lifetimes that match clinical needs. The devices exploit a bioresorbable dynamic covalent polymer that facilitates tight bonding to itself and other surfaces, as a soft, elastic substrate and encapsulation coating for wireless electronic components. We describe the underlying features and chemical design considerations for this polymer, and the biocompatibility of its constituent materials. In devices with optimized, wireless designs, these polymers enable stable, long-lived operation as distal stimulators in a rat model of peripheral nerve injuries, thereby demonstrating the potential of programmable long-term electrical stimulation for maintaining muscle receptivity and enhancing functional recovery.


Asunto(s)
Implantes Absorbibles , Terapia por Estimulación Eléctrica/instrumentación , Traumatismos de los Nervios Periféricos/terapia , Poliuretanos/química , Tecnología Inalámbrica/instrumentación , Animales , Modelos Animales de Enfermedad , Terapia por Estimulación Eléctrica/métodos , Femenino , Humanos , Ensayo de Materiales , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Ratas , Regeneración , Nervio Ciático/lesiones , Nervio Ciático/fisiología
7.
Cell ; 181(1): 115-135, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32220309

RESUMEN

Techniques for neuromodulation serve as effective routes to care of patients with many types of challenging conditions. Continued progress in this field of medicine will require (1) improvements in our understanding of the mechanisms of neural control over organ function and (2) advances in technologies for precisely modulating these functions in a programmable manner. This review presents recent research on devices that are relevant to both of these goals, with an emphasis on multimodal operation, miniaturized dimensions, biocompatible designs, advanced neural interface schemes, and battery-free, wireless capabilities. A future that involves recording and modulating neural activity with such systems, including those that exploit closed-loop strategies and/or bioresorbable designs, seems increasingly within reach.


Asunto(s)
Materiales Biocompatibles/uso terapéutico , Sistema Nervioso , Prótesis e Implantes , Animales , Humanos , Estimulación Eléctrica Transcutánea del Nervio/métodos
8.
Nat Commun ; 10(1): 5742, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31848334

RESUMEN

Small animals support a wide range of pathological phenotypes and genotypes as versatile, affordable models for pathogenesis of cardiovascular diseases and for exploration of strategies in electrotherapy, gene therapy, and optogenetics. Pacing tools in such contexts are currently limited to tethered embodiments that constrain animal behaviors and experimental designs. Here, we introduce a highly miniaturized wireless energy-harvesting and digital communication electronics for thin, miniaturized pacing platforms weighing 110 mg with capabilities for subdermal implantation and tolerance to over 200,000 multiaxial cycles of strain without degradation in electrical or optical performance. Multimodal and multisite pacing in ex vivo and in vivo studies over many days demonstrate chronic stability and excellent biocompatibility. Optogenetic stimulation of cardiac cycles with in-animal control and induction of heart failure through chronic pacing serve as examples of modes of operation relevant to fundamental and applied cardiovascular research and biomedical technology.


Asunto(s)
Ingeniería Biomédica/métodos , Dispositivos de Terapia de Resincronización Cardíaca , Insuficiencia Cardíaca/etiología , Miniaturización , Optogenética/métodos , Animales , Modelos Animales de Enfermedad , Suministros de Energía Eléctrica , Femenino , Humanos , Preparación de Corazón Aislado , Masculino , Ratones , Ratones Transgénicos , Tecnología Inalámbrica
9.
Sci Transl Med ; 10(470)2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30518611

RESUMEN

Exposure to electromagnetic radiation can have a profound impact on human health. Ultraviolet (UV) radiation from the sun causes skin cancer. Blue light affects the body's circadian melatonin rhythm. At the same time, electromagnetic radiation in controlled quantities has beneficial use. UV light treats various inflammatory skin conditions, and blue light phototherapy is the standard of care for neonatal jaundice. Although quantitative measurements of exposure in these contexts are important, current systems have limited applicability outside of laboratories because of an unfavorable set of factors in bulk, weight, cost, and accuracy. We present optical metrology approaches, optoelectronic designs, and wireless modes of operation that serve as the basis for miniature, low-cost, and battery-free devices for precise dosimetry at multiple wavelengths. These platforms use a system on a chip with near-field communication functionality, a radio frequency antenna, photodiodes, supercapacitors, and a transistor to exploit a continuous accumulation mechanism for measurement. Experimental and computational studies of the individual components, the collective systems, and the performance parameters highlight the operating principles and design considerations. Evaluations on human participants monitored solar UV exposure during outdoor activities, captured instantaneous and cumulative exposure during blue light phototherapy in neonatal intensive care units, and tracked light illumination for seasonal affective disorder phototherapy. Versatile applications of this dosimetry platform provide means for consumers and medical providers to modulate light exposure across the electromagnetic spectrum in a way that can both reduce risks in the context of excessive exposure and optimize benefits in the context of phototherapy.


Asunto(s)
Suministros de Energía Eléctrica , Miniaturización/instrumentación , Fototerapia , Dosímetros de Radiación , Exposición a la Radiación , Monitoreo de Radiación/instrumentación , Luz Solar , Tecnología Inalámbrica , Humanos , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Rayos Ultravioleta
10.
Lab Chip ; 18(15): 2178-2186, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29955754

RESUMEN

The rich composition of solutes and metabolites in sweat and its relative ease of collection upon excretion from skin pores make this class of biofluid an attractive candidate for point of care analysis. Wearable technologies that combine electrochemical sensors with conventional or emerging semiconductor device technologies offer valuable capabilities in sweat sensing, but they are limited to assays that support amperometric, potentiometric, and colorimetric analyses. Here, we present a complementary approach that exploits fluorometric sensing modalities integrated into a soft, skin-interfaced microfluidic system which, when paired with a simple smartphone-based imaging module, allows for in situ measurement of important biomarkers in sweat. A network array of microchannels and a collection of microreservoirs pre-filled with fluorescent probes that selectively react with target analytes in sweat (e.g. probes), enable quantitative, rapid analysis. Field studies on human subjects demonstrate the ability to measure the concentrations of chloride, sodium and zinc in sweat, with accuracy that matches that of conventional laboratory techniques. The results highlight the versatility of advanced fluorescent-based imaging modalities in body-worn sweat microfluidics platforms, and they suggest some practical potential for these ideas.


Asunto(s)
Fluorometría/instrumentación , Dispositivos Laboratorio en un Chip , Imagen Molecular/instrumentación , Piel/química , Teléfono Inteligente , Sudor/química , Cloruros/análisis , Humanos , Sodio/análisis , Zinc/análisis
11.
Small ; 14(11): e1703852, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29377490

RESUMEN

Mechanically guided 3D microassembly with controlled compressive buckling represents a promising emerging route to 3D mesostructures in a broad range of advanced materials, including single-crystalline silicon (Si), of direct relevance to microelectronic devices. During practical applications, the assembled 3D mesostructures and microdevices usually undergo external mechanical loading such as out-of-plane compression, which can induce damage in or failure of the structures/devices. Here, the mechanical responses of a few mechanically assembled 3D kirigami mesostructures under flat-punch compression are studied through combined experiment and finite element analyses. These 3D kirigami mesostructures consisting of a bilayer of Si and SU-8 epoxy are formed through integration of patterned 2D precursors with a prestretched elastomeric substrate at predefined bonding sites to allow controlled buckling that transforms them into desired 3D configurations. In situ scanning electron microscopy measurement enables detailed studies of the mechanical behavior of these structures. Analysis of the load-displacement curves allows the measurement of the effective stiffness and elastic recovery of various 3D structures. The compression experiments indicate distinct regimes in the compressive force/displacement curves and reveals different geometry-dependent deformation for the structures. Complementary computational modeling supports the experimental findings and further explains the geometry-dependent deformation.

12.
Proc Natl Acad Sci U S A ; 114(28): E5522-E5529, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28652373

RESUMEN

Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for "green" electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are (i) collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, (ii) release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and (iii) planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries.

13.
Sci Adv ; 2(8): e1600418, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27493994

RESUMEN

Recent advances in materials, mechanics, and electronic device design are rapidly establishing the foundations for health monitoring technologies that have "skin-like" properties, with options in chronic (weeks) integration with the epidermis. The resulting capabilities in physiological sensing greatly exceed those possible with conventional hard electronic systems, such as those found in wrist-mounted wearables, because of the intimate skin interface. However, most examples of such emerging classes of devices require batteries and/or hard-wired connections to enable operation. The work reported here introduces active optoelectronic systems that function without batteries and in an entirely wireless mode, with examples in thin, stretchable platforms designed for multiwavelength optical characterization of the skin. Magnetic inductive coupling and near-field communication (NFC) schemes deliver power to multicolored light-emitting diodes and extract digital data from integrated photodetectors in ways that are compatible with standard NFC-enabled platforms, such as smartphones and tablet computers. Examples in the monitoring of heart rate and temporal dynamics of arterial blood flow, in quantifying tissue oxygenation and ultraviolet dosimetry, and in performing four-color spectroscopic evaluation of the skin demonstrate the versatility of these concepts. The results have potential relevance in both hospital care and at-home diagnostics.


Asunto(s)
Técnicas Biosensibles , Electrónica , Fenómenos Fisiológicos de la Piel , Piel , Tecnología Inalámbrica , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Presión Sanguínea , Electrónica/instrumentación , Electrónica/métodos , Epidermis/fisiología , Frecuencia Cardíaca , Oximetría/instrumentación , Oximetría/métodos , Dosímetros de Radiación , Flujo Sanguíneo Regional
14.
Adv Mater ; 28(22): 4563, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27273442

RESUMEN

The design of an ultrathin, conformal electronic device that integrates electrotactile stimulation with electromyography, temperature, and strain sensing in a single, simple platform is reported by J. A. Rogers and co-workers on page 4462. Demonstrated application possibilities include prosthetic control with sensory feedback, monitors, and stimulation signals related to lower back exertion, and electrical muscle stimulation with feedback control.


Asunto(s)
Esfuerzo Físico , Estimulación Eléctrica , Electromiografía , Retroalimentación Sensorial , Músculo Esquelético
15.
Adv Mater ; 28(22): 4462-71, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26469201

RESUMEN

The design of an ultrathin, conformal electronic device that integrates electrotactile stimulation with electromyography, temperature, and strain sensing in a single, simple platform is reported. Experiments demonstrate simultaneous use of multiple modes of operation of this type of device in the sensorimotor control of robotic systems, in the monitoring of lower back exertion and in muscle stimulation.


Asunto(s)
Electromiografía/instrumentación , Esfuerzo Físico , Epidermis , Humanos , Músculo Esquelético
16.
Adv Mater ; 27(10): 1731-7, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25641076

RESUMEN

Advanced materials and fractal design concepts form the basis of a 3D conformal electronic platform with unique capabilities in cardiac electrotherapies. Fractal geometries, advanced electrode materials, and thin, elastomeric membranes yield a class of device capable of integration with the entire 3D surface of the heart, with unique operational capabilities in low power defibrillation. Co-integrated collections of sensors allow simultaneous monitoring of physiological responses. Animal experiments on Langendorff-perfused rabbit hearts demonstrate the key features of these systems.


Asunto(s)
Terapia por Estimulación Eléctrica/instrumentación , Electrodos , Corazón , Aleaciones/química , Animales , Elastómeros , Impedancia Eléctrica , Terapia por Estimulación Eléctrica/métodos , Diseño de Equipo , Fractales , Corazón/fisiología , Corazón/fisiopatología , Iridio/química , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Nanoestructuras/química , Imagen Óptica , Compuestos de Platino/química , Poliestirenos/química , Conejos , Elastómeros de Silicona , Compuestos de Plata/química , Análisis Espectral , Tiofenos/química , Titanio/química
17.
Nano Lett ; 15(5): 2801-8, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25706246

RESUMEN

Transient electronics represents an emerging class of technology that exploits materials and/or device constructs that are capable of physically disappearing or disintegrating in a controlled manner at programmed rates or times. Inorganic semiconductor nanomaterials such as silicon nanomembranes/nanoribbons provide attractive choices for active elements in transistors, diodes and other essential components of overall systems that dissolve completely by hydrolysis in biofluids or groundwater. We describe here materials, mechanics, and design layouts to achieve this type of technology in stretchable configurations with biodegradable elastomers for substrate/encapsulation layers. Experimental and theoretical results illuminate the mechanical properties under large strain deformation. Circuit characterization of complementary metal-oxide-semiconductor inverters and individual transistors under various levels of applied loads validates the design strategies. Examples of biosensors demonstrate possibilities for stretchable, transient devices in biomedical applications.


Asunto(s)
Técnicas Biosensibles/métodos , Elastómeros/química , Nanotecnología/métodos , Silicio/química , Electrónica , Nanoestructuras/química , Semiconductores
18.
Nat Commun ; 5: 3329, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24569383

RESUMEN

Means for high-density multiparametric physiological mapping and stimulation are critically important in both basic and clinical cardiology. Current conformal electronic systems are essentially 2D sheets, which cannot cover the full epicardial surface or maintain reliable contact for chronic use without sutures or adhesives. Here we create 3D elastic membranes shaped precisely to match the epicardium of the heart via the use of 3D printing, as a platform for deformable arrays of multifunctional sensors, electronic and optoelectronic components. Such integumentary devices completely envelop the heart, in a form-fitting manner, and possess inherent elasticity, providing a mechanically stable biotic/abiotic interface during normal cardiac cycles. Component examples range from actuators for electrical, thermal and optical stimulation, to sensors for pH, temperature and mechanical strain. The semiconductor materials include silicon, gallium arsenide and gallium nitride, co-integrated with metals, metal oxides and polymers, to provide these and other operational capabilities. Ex vivo physiological experiments demonstrate various functions and methodological possibilities for cardiac research and therapy.


Asunto(s)
Algoritmos , Corazón/fisiología , Membranas Artificiales , Modelos Cardiovasculares , Pericardio/fisiología , Animales , Elastómeros/química , Electrocardiografía/instrumentación , Electrocardiografía/métodos , Electrodos , Técnicas Electrofisiológicas Cardíacas/instrumentación , Técnicas Electrofisiológicas Cardíacas/métodos , Mapeo Epicárdico/instrumentación , Mapeo Epicárdico/métodos , Corazón/anatomía & histología , Sistema de Conducción Cardíaco/fisiología , Concentración de Iones de Hidrógeno , Imagenología Tridimensional , Técnicas In Vitro , Pericardio/anatomía & histología , Conejos , Reproducibilidad de los Resultados , Semiconductores , Siliconas/química , Temperatura
19.
Nat Commun ; 4: 1543, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23443571

RESUMEN

An important trend in electronics involves the development of materials, mechanical designs and manufacturing strategies that enable the use of unconventional substrates, such as polymer films, metal foils, paper sheets or rubber slabs. The last possibility is particularly challenging because the systems must accommodate not only bending but also stretching. Although several approaches are available for the electronics, a persistent difficulty is in power supplies that have similar mechanical properties, to allow their co-integration with the electronics. Here we introduce a set of materials and design concepts for a rechargeable lithium ion battery technology that exploits thin, low modulus silicone elastomers as substrates, with a segmented design in the active materials, and unusual 'self-similar' interconnect structures between them. The result enables reversible levels of stretchability up to 300%, while maintaining capacity densities of ~1.1 mAh cm(-2). Stretchable wireless power transmission systems provide the means to charge these types of batteries, without direct physical contact.

20.
Adv Mater ; 25(10): 1395-400, 2013 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-23280571

RESUMEN

A class of imprintable, bendable, and shape-conformable polymer electrolyte with excellent electrochemical performance in a lithium battery system is reported. The material consists of a UV-cured polymer matrix, high-boiling point liquid electrolyte, and Al2 O3 nanoparticles, formulated for use in lithium-ion batteries with 3D-structured electrodes or flexible characteristics. The unique structural design and well-tuned rheological characteristics of the UV-curable electrolyte mixture, in combination with direct UV-assisted nanoimprint lithography, allow the successful fabrication of polymer electrolytes in geometries not accessible with conventional materials.


Asunto(s)
Suministros de Energía Eléctrica , Electrólitos/química , Litio/química , Polímeros/química , Acrilatos/química , Óxido de Aluminio/química , Electrodos , Iones/química , Nanopartículas del Metal/química , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA