Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Process Impacts ; 25(11): 1802-1816, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37132588

RESUMEN

The present study complements work on mixture effects measured with in vitro bioassays of passive equilibrium sampling extracts using the silicone polydimethylsiloxane (PDMS) in organs from marine mammals with chemical profiling. Blubber, liver, kidney and brain tissues of harbor porpoise (Phocoena phocoena), harbor seal (Phoca vitulina), ringed seal (Phoca hispida) and orca (Orcinus orca) from the North and Baltic Seas were investigated. We analyzed 117 chemicals including legacy and emerging contaminants using gas chromatography-high resolution mass spectrometry and quantified 70 of those chemicals in at least one sample. No systematic differences between the organs were found. Only for single compounds a clear distribution pattern was observed. For example, 4,4'-dichlorodiphenyltrichloroethane, enzacamene and etofenprox were mainly detected in blubber, whereas tonalide and the hexachlorocyclohexanes were more often found in liver. Furthermore, we compared the chemical profiling with the bioanalytical results using an iceberg mixture model, evaluating how much of the biological effect could be explained by the analyzed chemicals. The mixture effect predicted from the quantified chemical concentrations explained 0.014-83% of the aryl hydrocarbon receptor activating effect (AhR-CALUX), but less than 0.13% for the activation of the oxidative stress response (AREc32) and peroxisome-proliferator activated receptor (PPARγ). The quantified chemicals also explained between 0.044-45% of the cytotoxic effect measured with the AhR-CALUX. The largest fraction of the observed effect was explained for the orca, which was the individuum with the highest chemical burden. This study underlines that chemical analysis and bioassays are complementary to comprehensively characterize the mixture exposome of marine mammals.


Asunto(s)
Exposoma , Phocidae , Contaminantes Químicos del Agua , Animales , Cromatografía de Gases y Espectrometría de Masas , Hígado/química , Bioensayo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
2.
Environ Sci Eur ; 34(1): 66, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35946043

RESUMEN

Background: Bioaccumulation of hydrophobic organic compounds (HOCs) along freshwater food chains is a major environmental concern as top predators in food webs are relevant for human consumption. To characterize and manage the associated risks, considerable numbers of organisms are sampled regularly for monitoring purposes. However, ethical and financial issues call for an alternative, more generic and more robust approach for assessing the internal exposure of fish that circumvents large variability in biota sampling due to interindividual differences. Passive sampling devices (PSDs) offer a fugacity-based approach for pollutant enrichment from different abiotic environmental compartments with a subsequent estimation of bioaccumulation in fish which we explored and compared to HOC concentrations in fish as determined using traditional approaches. Results: In this study, concentrations in silicone-based PSDs applied to the water phase and suspended particulate matter (SPM) of a river polluted with HOCs were used to estimate the concentration in model lipids at thermodynamic equilibrium with either environmental compartment. For comparison, muscle tissue of seven fish species (trophic level 1.8 to 2.8) was extracted using traditional exhaustive solvent extraction, and the lipid-normalized concentrations of HOCs were determined. The PSD-based data from SPM proved to be a more conservative estimator for HOCs accumulated in fish than those from water. Body length of the fish was found to be more suitable to describe increasing accumulation of HOCs than their trophic level as derived from stable isotope analysis and might offer a suitable alternative for future studies. Conclusions: By combining fugacity-based sampling in the abiotic environment, translation into corresponding concentrations in model lipids and body length as an indicator for increasing bioaccumulation in fish, we present a suggestion for a robust approach that may be a meaningful addition to conventional monitoring methods. This approach potentially increases the efficiency of existing monitoring programs without the need to regularly sacrifice vertebrate species. Supplementary Information: The online version contains supplementary material available at 10.1186/s12302-022-00644-w.

3.
Environ Toxicol Chem ; 40(10): 2693-2704, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34255885

RESUMEN

Contaminant analysis in biota extracts can be hampered by matrix interferences caused by, for example, co-extracted lipids that compromise the quality of the analytical data and require frequent maintenance of the analytical instruments. In the present study, using gas chromatography coupled to high resolution mass spectrometry (GC-HRMS), we aimed to develop and validate a straightforward, robust, and reproducible cleanup method with acceptable recoveries for diverse compound classes with a wide range of physicochemical properties representative of pollutant screening in biota extracts. We compared Oasis PRiME HLB cartridges, Agilent Captiva EMR-Lipid cartridges, and "Freeze-Out" with salmon lipids spiked with 113 target chemicals. The EMR-Lipid cartridges provided extracts with low matrix effects at reproducible recoveries of the multi-class target analytes (93 ± 9% and 95 ± 7% for low and high lipid amounts, respectively). The EMR-Lipid cartridges were further tested with spiked pork lipids submitted to total extraction or silicone-based passive sampling. Reproducible recoveries were achieved and matrix residuals were largely removed as demonstrated gravimetrically for both types of extracts. Ion suppression of halogenated compounds was not as efficiently removed by the cleanup of total and silicone-based extracts of pork lipids as for the salmon lipids. However, the samples with clean up provided better instrument robustness than those without cleanup. Hence, EMR-Lipid cartridges were shown to be efficient as a cleanup method in multi-class monitoring of biota samples and open up new possibilities as a suitable cleanup method for silicone extracts in biota passive sampling studies using GC-HRMS analysis. Environ Toxicol Chem 2021;40:2693-2704. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Salmón , Siliconas , Animales , Biota , Cromatografía de Gases y Espectrometría de Masas/métodos , Lípidos/química , Extractos Vegetales , Extracción en Fase Sólida
4.
Chemosphere ; 170: 41-50, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27974270

RESUMEN

Dolphins are considered sentinel species in the marine environment. The Strait of Gibraltar is the only passage between the Mediterranean Sea and the Atlantic Ocean, being the transitional region which connects these two basins and one of the most important routes of cetacean migration worldwide. In this work, eight trace elements (TE) were studied in 45 samples of liver, kidney and muscle, from 15 specimens stranded in this study area. The preliminary results show, among others, the patterns of distribution of the TE in the target organs studied, the influence of sex, length and developmental stage in these TE concentrations and the Se/Hg ratio. Subsequently, the results of TE concentrations in liver have being compared to previous data on S. coeruleoalba from the westernmost Mediterranean Sea and the nearest Atlantic Ocean. For some elements (e.g. for As), concentrations are similar to those obtained from Atlantic samples, despite in other cases (e.g. for Cd) results are lined up with those observed in Mediterranean studies. In addition, in the case of some TE (e.g. Se and Zn) the results are in the middle of those reported for both basins, reinforcing the idea of the Strait of Gibraltar being a transitional zone. Present study is the first research regarding this issue in this outstanding region, aiming to give insights of how this matchless area can help to link TE concentrations observed in these Atlantic and Mediterranean threatened species.


Asunto(s)
Monitoreo del Ambiente , Stenella/metabolismo , Oligoelementos/análisis , Contaminantes del Agua/análisis , Animales , Océano Atlántico , Tamaño Corporal , Femenino , Geografía , Gibraltar , Hígado/química , Masculino , Mar Mediterráneo , Mercurio/análisis , Selenio/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA