Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Pharmacol ; 223: 116127, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38490519

RESUMEN

Sepsis induced myocardial dysfunction (SIMD) is a serious complication of sepsis. There is increasing evidence that the renin-angiotensin system (RAS) is activated in SIMD. Angiotensinogen (AGT) is a precursor of the RAS, and the inhibition of AGT may have significant cardiovascular benefits. But until now, there have been no reports of small molecule drugs targeting AGT. In this study, we designed a promoter-luciferase based system to screen for novel AGT inhibitors to alleviate SIMD. As a result of high-throughput screening, a total of 5 compounds from 351 medicinal herb-derived natural compounds were found inhibiting AGT. 18ß-glycyrrhetinic acid (18ßGA) was further identified as a potent suppressor of AGT. In vitro experiments, 18ßGA could inhibit the secretion of AGT by HepG2 cells and alleviate the elevated level of mitochondrial oxidative stress in cardiomyocytes co-cultured with HepG2 supernatants. In vivo, 18ßGA prolonged the survival rate of SIMD mice, enhanced cardiac function, and inhibited the damage of mitochondrial function and inflammation. In addition, the results showed that 18ßGA may reduce AGT transcription by downregulating hepatocyte nuclear factor 4 (HNF4) and that further alleviated SIMD. In conclusion, we provided a more efficient screening strategy for AGT inhibitors and expanded the novel role of 18ßGA as a promising lead compound in rescuing cardiovascular disease associated with RAS overactivation.


Asunto(s)
Ácido Glicirretínico/análogos & derivados , Ensayos Analíticos de Alto Rendimiento , Sepsis , Ratones , Animales , Lipopolisacáridos , Angiotensinógeno/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA