Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-34948840

RESUMEN

Considering that athletes constantly practice and compete in noisy environments, the aim was to investigate if performing neurofeedback training in these conditions would yield better results in performance than in silent ones. A total of forty-five student athletes aged from 18 to 35 years old and divided equally into three groups participated in the experiment (mean ± SD for age: 22.02 ± 3.05 years). The total neurofeedback session time for each subject was 300 min and were performed twice a week. The environment in which the neurofeedback sessions were conducted did not seem to have a significant impact on the training's success in terms of alpha relative amplitude changes (0.04 ± 0.08 for silent room versus 0.07 ± 0.28 for noisy room, p = 0.740). However, the group exposed to intermittent noise appears to have favourable results in all performance assessments (p = 0.005 for working memory and p = 0.003 for reaction time). The results of the study suggested that performing neurofeedback training in an environment with intermittent noise can be interesting to athletes. Nevertheless, it is imperative to perform a replicated crossover design.


Asunto(s)
Neurorretroalimentación , Adolescente , Adulto , Atletas , Humanos , Memoria a Corto Plazo , Estudiantes , Adulto Joven
2.
Artículo en Inglés | MEDLINE | ID: mdl-34886301

RESUMEN

Neurofeedback training is a technique which has seen a widespread use in clinical applications, but has only given its first steps in the sport environment. Therefore, there is still little information about the effects that this technique might have on parameters, which are relevant for athletes' health and performance, such as heart rate variability, which has been linked to physiological recovery. In the sport domain, no studies have tried to understand the effects of neurofeedback training on heart rate variability, even though some studies have compared the effects of doing neurofeedback or heart rate biofeedback training on performance. The main goal of the present study was to understand if alpha-band neurofeedback training could lead to increases in heart rate variability. 30 male student-athletes, divided into two groups, (21.2 ± 2.62 year 2/week protocol and 22.6 ± 1.1 year 3/week protocol) participated in the study, of which three subjects were excluded. Both groups performed a pre-test, a trial session and 12 neurofeedback sessions, which consisted of 25 trials of 60 s of a neurofeedback task, with 5 s rest in-between trials. The total neurofeedback session time for each subject was 300 min in both groups. Throughout the experiment, electroencephalography and heart rate variability signals were recorded. Only the three sessions/week group revealed significant improvements in mean heart rate variability at the end of the 12 neurofeedback sessions (p = 0.05); however, significant interaction was not found when compared with both groups. It is possible to conclude that neurofeedback training of individual alpha band may induce changes in heart rate variability in physically active athletes.


Asunto(s)
Neurorretroalimentación , Deportes , Atletas , Electroencefalografía , Frecuencia Cardíaca , Humanos , Masculino
3.
Neural Plast ; 2021: 8881059, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777137

RESUMEN

Neurofeedback training has shown benefits in clinical treatment and behavioral performance enhancement. Despite the wide range of applications, no consensus has been reached about the optimal training schedule. In this work, an EEG neurofeedback practical experiment was conducted aimed at investigating the effects of training intensity on the enhancement of the amplitude in the individual upper alpha band. We designed INTENSIVE and SPARSE training modalities, which differed regarding three essential aspects of training intensity: the number of sessions, the duration of a session, and the interval between sessions. Nine participants in the INTENSIVE group completed 4 sessions with 37.5 minutes each during consecutive days, while nine participants in the SPARSE group performed 6 sessions of 25 minutes spread over approximately 3 weeks. As a result, regarding the short-term effects, the upper alpha band amplitude change within sessions did not significantly differ between the two groups. Nonetheless, only the INTENSIVE group showed a significant increase in the upper alpha band amplitude. However, for the sustained effects across sessions, none of the groups showed significant changes in the upper alpha band amplitude across the whole course of training. The findings suggest that the progression within session is favored by the intensive design. Therefore, based on these findings, it is proposed that training intensity influences EEG self-regulation within sessions. Further investigations are needed to isolate different aspects of training intensity and effectively confirm if one modality globally outperforms the other.


Asunto(s)
Encéfalo/fisiología , Electroencefalografía/métodos , Neurorretroalimentación/métodos , Neurorretroalimentación/fisiología , Desempeño Psicomotor/fisiología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
4.
Appl Psychophysiol Biofeedback ; 46(2): 195-204, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33528679

RESUMEN

Neurofeedback training has been an increasingly used technique and is taking its first steps in sport. Being at an embryonic stage, it is difficult to find consensus regarding the applied methodology to achieve the best results. This study focused on understanding one of the major methodological issues-the training session frequency. The aim of the investigation was to understand if there are differences between performing two sessions or three sessions per week in enhancement of alpha activity and improvement of cognition; and in case there are differences, infer the best protocol. Forty-five athletes were randomly assigned to the three-session-training-per-week group, the two-session-training-per-week group and a control group. The results showed that neurofeedback training with three sessions per week was more effective in increase of alpha amplitude during neurofeedback training than two sessions per week. Furthermore, only the three-session-per-week group showed significant enhancement in N-back and oddball performance after training. The findings suggested more condensed training protocol lead to better outcomes, providing guidance on neurofeedback protocol design in order to optimize training efficacy.


Asunto(s)
Neurorretroalimentación , Deportes , Atletas , Cognición , Electroencefalografía , Humanos
5.
Brain ; 143(6): 1674-1685, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32176800

RESUMEN

Neurofeedback has begun to attract the attention and scrutiny of the scientific and medical mainstream. Here, neurofeedback researchers present a consensus-derived checklist that aims to improve the reporting and experimental design standards in the field.


Asunto(s)
Lista de Verificación/métodos , Neurorretroalimentación/métodos , Adulto , Consenso , Femenino , Humanos , Masculino , Persona de Mediana Edad , Revisión de la Investigación por Pares , Proyectos de Investigación/normas , Participación de los Interesados
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 5960-5966, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31947205

RESUMEN

Electroencephalography (EEG) neurofeedback (NF) training has been shown to produce long-lasting effects on the improvement of cognitive function as well as the normalization of aberrant brain activity in disease. However, the impact of the sensory modality used as the NF reinforcement signal on training effectiveness has not been systematically investigated. In this work, an EEG-based NF-training system was developed targeting the individual upper-alpha (UA) band and using either a visual or an auditory reinforcement signal, so as to compare the effects of the two sensory modalities. Sixteen healthy volunteers were randomly assigned to the Visual or Auditory group, where a radius-varying sphere or a volume-varying sound, respectively, reflected the relative amplitude of UA measured at EEG electrode Cz. Each participant underwent a total of four NF sessions, of approximately 40 min each, on consecutive days. Both groups showed significant increases in UA at Cz within sessions, and also across sessions. Effects subsequent to NF training were also found beyond the target frequency UA and scalp location Cz, namely in the lower-alpha and theta bands and in posterior brain regions, respectively. Only small differences were found on the EEG between the Visual and Auditory groups, suggesting that auditory reinforcement signals may be as effective as the more commonly used visual signals. The use of auditory NF may potentiate training protocols conducted under mobile conditions, which are now possible due to the increasing availability of wireless EEG systems.


Asunto(s)
Estimulación Acústica , Electroencefalografía , Neurorretroalimentación , Estimulación Luminosa , Ritmo alfa , Encéfalo , Cognición , Femenino , Humanos , Masculino , Memoria a Corto Plazo , Distribución Aleatoria , Adulto Joven
7.
Brain Dev ; 41(1): 66-71, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30037585

RESUMEN

Congenital hypothyroidism is defined as thyroid hormone deficiency present at birth which is crucial for brain development. Recently, the cyclic alternating pattern, a rhythm present in electroencephalography recordings in non-Rapid eye movement sleep, has been related to brain development and cognition in different pediatric conditions. Therefore, we evaluated the cyclic alternating pattern rate in infants with congenital hypothyroidism, thyroxine supplementation, and healthy controls. The parameters of the cyclic alternating pattern were evaluated in 19 healthy infants (10 female, mean age 25.5 ±â€¯15.5 months) and 21 infants diagnosed with congenital hypothyroidism (19 female, mean age 24.3 ±â€¯19.0 months). We considered the transient electro-cortical activations (phase A of the cycle) in non-Rapid eye movement sleep and the subdivisions of the A phase in: A1, A2 and A3, based on their frequency content. All subjects were subjected to polysomnography recording in a standard laboratory setting. Sleep data were stored computer following the International 10-20 System. Data showed that congenital hypothyroidism infants exhibited higher frequency of central apnea, hypopnea, and arousals in comparison to controls. Particularly, central apnea index decreased with age in the control group but not in congenital hypothyroidism group. Regarding to cyclic alternating pattern measurements, congenital hypothyroidism infants exhibit a higher frequency in the percentage of A3 subtype (electroencephalographic desynchrony) and conversely a lower percentage of A1 subtype (electroencephalographic synchrony), than healthy infants. An important finding of this study is the positive correlation between A1 mean duration and age, which is bigger in control group than in congenital hypothyroidism group (time duration in control group (0.52 s/month) versus congenital hypothyroidism group (0.1 s/month). Infants with congenital hypothyroidism showed an increase of A3 subtype, of central apnea, and of arousals. The reduction of percentage and mean duration of A1 subtype could be a valuable indicator of sleep development in patients with congenital hypothyroidism and healthy infants.


Asunto(s)
Encéfalo/fisiopatología , Hipotiroidismo Congénito/fisiopatología , Fases del Sueño/fisiología , Encéfalo/crecimiento & desarrollo , Preescolar , Hipotiroidismo Congénito/complicaciones , Hipotiroidismo Congénito/diagnóstico , Hipotiroidismo Congénito/terapia , Electroencefalografía , Femenino , Terapia de Reemplazo de Hormonas , Humanos , Lactante , Masculino , Polisomnografía , Apnea Central del Sueño/complicaciones , Apnea Central del Sueño/diagnóstico , Apnea Central del Sueño/fisiopatología , Tiroxina/uso terapéutico
8.
Behav Neurol ; 2017: 6914216, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28701821

RESUMEN

Schizophrenia is a chronic and devastating brain disorder with ongoing cognitive, behavioral, and emotional deteriorated functions. Neurofeedback training, which enables the individuals to regulate their brain activity using a real-time feedback loop, is increasingly investigated as a potential alternative intervention for schizophrenia. This study aimed to explore the effect of short but intensive neurofeedback training for schizophrenic patients with difficulty for long-time training. A middle-aged woman with chronic schizophrenia completed the intensive training of alpha/beta2 (20-30 Hz) in four consecutive days with a total training duration of 13.5 hours. The results showed that her alpha/beta2 increased over sessions, and her behavior performance including short-term memory, mood, and speech pattern was improved at the end of neurofeedback training. Importantly, a 22-month follow-up found a dramatic improvement in both positive and negative symptoms. These positive outcomes suggest that such intensive neurofeedback training may provide new insight into the treatment of schizophrenia and thus deserves further study to fully examine its scope.


Asunto(s)
Neurorretroalimentación/métodos , Esquizofrenia/terapia , Electroencefalografía/métodos , Femenino , Humanos , Persona de Mediana Edad , Proyectos Piloto
9.
J Neural Eng ; 13(3): 036019, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27152666

RESUMEN

OBJECTIVE: Steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) can provide relatively easy, reliable and high speed communication. However, the performance is still not satisfactory, especially in some users who are not able to generate strong enough SSVEP signals. This work aims to strengthen a user's SSVEP by alpha down-regulating neurofeedback training (NFT) and consequently improve the performance of the user in using SSVEP-based BCIs. APPROACH: An experiment with two steps was designed and conducted. The first step was to investigate the relationship between the resting alpha activity and the SSVEP-based BCI performance, in order to determine the training parameter for the NFT. Then in the second step, half of the subjects with 'low' performance (i.e. BCI classification accuracy <80%) were randomly assigned to a NFT group to perform a real-time NFT, and the rest half to a non-NFT control group for comparison. MAIN RESULTS: The first step revealed a significant negative correlation between the BCI performance and the individual alpha band (IAB) amplitudes in the eyes-open resting condition in a total of 33 subjects. In the second step, it was found that during the IAB down-regulating NFT, on average the subjects were able to successfully decrease their IAB amplitude over training sessions. More importantly, the NFT group showed an average increase of 16.5% in the SSVEP signal SNR (signal-to-noise ratio) and an average increase of 20.3% in the BCI classification accuracy, which was significant compared to the non-NFT control group. SIGNIFICANCE: These findings indicate that the alpha down-regulating NFT can be used to improve the SSVEP signal quality and the subjects' performance in using SSVEP-based BCIs. It could be helpful to the SSVEP related studies and would contribute to more effective SSVEP-based BCI applications.


Asunto(s)
Ritmo alfa/fisiología , Interfaces Cerebro-Computador , Potenciales Evocados Visuales/fisiología , Neurorretroalimentación/fisiología , Adulto , Algoritmos , Electroencefalografía , Femenino , Humanos , Masculino , Neurorretroalimentación/clasificación , Estimulación Luminosa , Reproducibilidad de los Resultados , Relación Señal-Ruido , Adulto Joven
10.
Artículo en Inglés | MEDLINE | ID: mdl-26737353

RESUMEN

Neurofeedback training (NFT) has shown positive effects on cognition and behavior enhancement as well as clinical treatment. However, little is known about the training effects in brain activity besides training location which is crucial for understanding the mechanism of neurofeedback and enhancing training efficiency. This study aimed to investigate beta/theta ratio (BTR) NFT effects on the spectral topography of electroencephalogram (EEG). Eleven healthy volunteers completed 25 sessions of NFT in consecutive five days with 5 sessions per day. The results showed that BTR NFT in occipital region did have significant effect on parietal, central and frontal regions, and the changes of BTR and theta amplitude detected in these regions were consistent with the changes at the training location. Moreover, the percentage changes of BTR and theta amplitude in parietal region were significantly greater than those in frontal region probably due to the shorter distance to the training location.


Asunto(s)
Electroencefalografía/métodos , Neurorretroalimentación/métodos , Adulto , Cognición/fisiología , Femenino , Humanos , Masculino , Experimentación Humana no Terapéutica , Lóbulo Parietal/fisiología , Adulto Joven
11.
Appl Psychophysiol Biofeedback ; 38(4): 285-91, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24101183

RESUMEN

Peripheral visual performance is an important ability for everyone, and a positive inter-individual correlation is found between the peripheral visual performance and the alpha amplitude during the performance test. This study investigated the effect of alpha neurofeedback training on the peripheral visual performance. A neurofeedback group of 13 subjects finished 20 sessions of alpha enhancement feedback within 20 days. The peripheral visual performance was assessed by a new dynamic peripheral visual test on the first and last training day. The results revealed that the neurofeedback group showed significant enhancement of the peripheral visual performance as well as the relative alpha amplitude during the peripheral visual test. It was not the case in the non-neurofeedback control group, which performed the tests within the same time frame as the neurofeedback group but without any training sessions. These findings suggest that alpha neurofeedback training was effective in improving peripheral visual performance. To the best of our knowledge, this is the first study to show evidence for performance improvement in peripheral vision via alpha neurofeedback training.


Asunto(s)
Ritmo alfa/fisiología , Corteza Cerebral/fisiología , Neurorretroalimentación/métodos , Percepción Visual/fisiología , Adulto , Electroencefalografía , Femenino , Humanos , Masculino
12.
Int J Psychophysiol ; 86(1): 83-7, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22864258

RESUMEN

Memory performance has been reported to be associated with electroencephalogram (EEG) alpha activity. This study aimed to improve short term memory performance by individual alpha neurofeedback training (NFT). With appropriate protocol designed for NFT, the experimental results showed that the participants were able to learn to increase the relative amplitude in individual alpha band during NFT and short term memory performance was significantly enhanced by 20 sessions of NFT. More importantly, further analysis revealed that the improvement of short term memory was positively correlated with the increase of the relative amplitude in the individual upper alpha band during training. In addition, effective strategies for individual alpha training varied among individuals and the most successful mental strategies were related to positive thinking.


Asunto(s)
Memoria a Corto Plazo/fisiología , Neurorretroalimentación/métodos , Adulto , Ritmo alfa , Interpretación Estadística de Datos , Electroencefalografía , Femenino , Humanos , Masculino , Procesos Mentales/fisiología , Desempeño Psicomotor/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA