Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 63(9): 1170-1177, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38587906

RESUMEN

The MbnBC enzyme complex converts cysteine residues in a peptide substrate, MbnA, to oxazolone/thioamide groups during the biosynthesis of copper chelator methanobactin (Mbn). MbnBC belongs to the mixed-valent diiron oxygenase (MVDO) family, of which members use an Fe(II)Fe(III) cofactor to react with dioxygen for substrate modification. Several crystal structures of the inactive Fe(III)Fe(III) form of MbnBC alone and in complex with MbnA have been reported, but a mechanistic understanding requires determination of the oxidation states of the crystallographically observed Fe ions in the catalytically active Fe(II)Fe(III) state, along with the site of MbnA binding. Here, we have used electron nuclear double resonance (ENDOR) spectroscopy to determine such structural and electronic properties of the active site, in particular, the mode of substrate binding to the MV state, information not accessible by X-ray crystallography alone. The oxidation states of the two Fe ions were determined by 15N ENDOR analysis. The presence and locations of both bridging and terminal exogenous solvent ligands were determined using 1H and 2H ENDOR. In addition, 2H ENDOR using an isotopically labeled MbnA substrate indicates that MbnA binds to the Fe(III) ion of the cluster via the sulfur atom of its N-terminal modifiable cysteine residue, with displacement of a coordinated solvent ligand as shown by complementary 1H ENDOR. These results, which underscore the utility of ENDOR in studying MVDOs, provide a molecular picture of the initial steps in Mbn biosynthesis.


Asunto(s)
Imidazoles , Oligopéptidos , Imidazoles/metabolismo , Imidazoles/química , Oligopéptidos/metabolismo , Oligopéptidos/química , Oligopéptidos/biosíntesis , Oxidación-Reducción , Cristalografía por Rayos X , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Espectroscopía de Resonancia por Spin del Electrón , Oxigenasas/metabolismo , Oxigenasas/química , Dominio Catalítico , Especificidad por Sustrato , Modelos Moleculares , Hierro/metabolismo , Hierro/química
2.
J Mol Biol ; 365(3): 715-21, 2007 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-17097678

RESUMEN

COMMD1 is the prototype of a new protein family that plays a role in several important cellular processes, including NF-kappaB signaling, sodium transport, and copper metabolism. The COMMD proteins interact with one another via a conserved C-terminal domain, whereas distinct functions are predicted to result from a variable N-terminal domain. The COMMD proteins have not been characterized biochemically or structurally. Here, we present the solution structure of the N-terminal domain of COMMD1 (N-COMMD1, residues 1-108). This domain adopts an alpha-helical structure that bears little resemblance to any other helical protein. The compact nature of N-COMMD1 suggests that full-length COMMD proteins are modular, consistent with specific functional properties for each domain. Interactions between N-COMMD1 and partner proteins may occur via complementary electrostatic surfaces. These data provide a new foundation for biochemical characterization of COMMD proteins and for probing COMMD1 protein-protein interactions at the molecular level.


Asunto(s)
Proteínas/química , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Proteínas Portadoras , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Soluciones , Electricidad Estática
3.
Inorg Chem ; 45(20): 8372-81, 2006 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-16999437

RESUMEN

The integral membrane enzyme particulate methane monooxygenase (pMMO) converts methane, the most inert hydrocarbon, to methanol under ambient conditions. The 2.8-A resolution pMMO crystal structure revealed three metal sites: a mononuclear copper center, a dinuclear copper center, and a nonphysiological mononuclear zinc center. Although not found in the crystal structure, solution samples of pMMO also contain iron. We have used X-ray absorption spectroscopy to analyze the oxidation states and coordination environments of the pMMO metal centers in as-isolated (pMMO(iso)), chemically reduced (pMMO(red)), and chemically oxidized (pMMO(ox)) samples. X-ray absorption near-edge spectra (XANES) indicate that pMMO(iso) contains both Cu(I) and Cu(II) and that the pMMO Cu centers can undergo redox chemistry. Extended X-ray absorption fine structure (EXAFS) analysis reveals a Cu-Cu interaction in all redox forms of the enzyme. The Cu-Cu distance increases from 2.51 to 2.65 A upon reduction, concomitant with an increase in the average Cu-O/N bond lengths. Appropriate Cu2 model complexes were used to refine and validate the EXAFS fitting protocols for pMMO(iso). Analysis of Fe EXAFS data combined with electron paramagnetic resonance (EPR) spectra indicates that Fe, present as Fe(III), is consistent with heme impurities. These findings are complementary to the crystallographic data and provide new insight into the oxidation states and possible electronic structures of the pMMO Cu ions.


Asunto(s)
Cobre/química , Oxigenasas/química , Espectroscopía de Resonancia por Spin del Electrón , Methylococcus capsulatus/enzimología , Oxidación-Reducción , Análisis Espectral
4.
J Biol Inorg Chem ; 11(4): 459-66, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16570183

RESUMEN

The Sco family of proteins are involved in the assembly of the dinuclear CuA site in cytochrome c oxidase (COX), the terminal enzyme in aerobic respiration. These proteins, which are found in both eukaryotes and prokaryotes, are characterized by a conserved CXXXC sequence motif that binds copper ions and that has also been proposed to perform a thiol:disulfide oxidoreductase function. The crystal structures of Saccharomyces cerevisiae apo Sco1 (apo-ySco1) and Sco1 in the presence of copper ions (Cu-ySco1) were determined to 1.8- and 2.3-A resolutions, respectively. Yeast Sco1 exhibits a thioredoxin-like fold, similar to that observed for human Sco1 and a homolog from Bacillus subtilis. The Cu-ySco1 structure, obtained by soaking apo-ySco1 crystals in copper ions, reveals an unexpected copper-binding site involving Cys181 and Cys216, cysteine residues present in ySco1 but not in other homologs. The conserved CXXXC cysteines, Cys148 and Cys152, can undergo redox chemistry in the crystal. An essential histidine residue, His239, is located on a highly flexible loop, denoted the Sco loop, and can adopt positions proximal to both pairs of cysteines. Interactions between ySco1 and its partner proteins yeast Cox17 and yeast COX2 are likely to occur via complementary electrostatic surfaces. This high-resolution model of a eukaryotic Sco protein provides new insight into Sco copper binding and function.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Secuencia Conservada , Cobre/química , Cobre/metabolismo , Cristalografía por Rayos X , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales , Modelos Moleculares , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiorredoxinas/química , Tiorredoxinas/metabolismo
5.
Inorg Chem ; 44(4): 770-8, 2005 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-15859245

RESUMEN

Metalloenzyme crystal structures have a major impact on our understanding of biological metal centers. They are often the starting point for mechanistic and computational studies and inspire synthetic modeling chemistry. The strengths and limitations of X-ray crystallography in determining properties of biological metal centers and their corresponding ligand spheres are explored through examples, including ribonucleotide reductase R2 and particulate methane monooxygenase. Protein crystal structures locate metal ions within a protein fold and reveal the identities and coordination geometries of amino acid ligands. Data collection strategies that exploit the anomalous scattering effect of metal ions can establish metal ion identity. The quality of crystallographic data, particularly the resolution, determines the level of detail that can be extracted from a protein crystal structure. Complementary spectroscopic techniques can provide crucial information regarding the redox state of the metal center as well as the presence, type, and protonation state of exogenous ligands. The final result of the crystallographic characterization of a metalloenzyme is a model based on crystallographic data, supported by information from biophysical and modeling studies, influenced by sample handling, and interpreted carefully by the crystallographer.


Asunto(s)
Metaloproteínas/química , Metales/química , Modelos Moleculares , Oxigenasas/química , Ribonucleótido Reductasas/química , Aminoácidos/química , Aminoácidos/metabolismo , Productos Biológicos , Cationes , Cristalografía por Rayos X , Ligandos , Metaloproteínas/metabolismo , Metales/metabolismo , Oxidación-Reducción , Oxigenasas/metabolismo , Conformación Proteica , Pliegue de Proteína , Ribonucleótido Reductasas/metabolismo
6.
J Biol Chem ; 279(51): 53584-92, 2004 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-15465825

RESUMEN

Cox17 is a 69-residue cysteine-rich, copper-binding protein that has been implicated in the delivery of copper to the Cu(A) and Cu(B) centers of cytochrome c oxidase via the copper-binding proteins Sco1 and Cox11, respectively. According to isothermal titration calorimetry experiments, fully reduced Cox17 binds one Cu(I) ion with a K(a) of (6.15 +/- 5.83) x 10(6) M(-1). The solution structures of both apo and Cu(I)-loaded Cox17 reveal two alpha helices preceded by an extensive, unstructured N-terminal region. This region is reminiscent of intrinsically unfolded proteins. The two structures are very similar overall with residues in the copper-binding region becoming more ordered in Cu(I)-loaded Cox17. Based on the NMR data, the Cu(I) ion has been modeled as two-coordinate with ligation by conserved residues Cys(23) and Cys(26). This site is similar to those observed for the Atx1 family of copper chaperones and is consistent with reported mutagenesis studies. A number of conserved, positively charged residues may interact with complementary surfaces on Sco1 and Cox11, facilitating docking and copper transfer. Taken together, these data suggest that Cox17 is not only well suited to a copper chaperone function but is specifically designed to interact with two different target proteins.


Asunto(s)
Proteínas de Transporte de Catión/fisiología , Cobre/química , Proteínas Fúngicas/química , Proteínas de Saccharomyces cerevisiae/fisiología , Sitios de Unión , Calorimetría , Proteínas de Transporte de Catión/metabolismo , Clonación Molecular , Proteínas Transportadoras de Cobre , Cisteína/química , Complejo IV de Transporte de Electrones/metabolismo , Cinética , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales , Modelos Moleculares , Chaperonas Moleculares/química , Oxidación-Reducción , Unión Proteica , Conformación Proteica , Desnaturalización Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA