Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ther Nucleic Acids ; 27: 1103-1115, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35228903

RESUMEN

Despite the existence of a prophylactic vaccine against hepatitis B virus (HBV), chronic hepatitis B virus (CHB) infection remains the leading cause of cirrhosis and liver cancer in developing countries. Because HBV persistence is associated with insufficient host immune responses to the infection, development of an immunomodulator as a component of therapeutic vaccination may become an important strategy for treatment CHB. In the present study, we aimed to design a novel immunomodulator with the capacity to subvert immune tolerance to HBV. We developed a lymphoid organ-targeting immunomodulator by conjugating a naturally occurring, lipophilic molecule, α-tocopherol, to a potent CpG oligonucleotide adjuvant pharmacophore. This approach resulted in preferential trafficking of the α-tocopherol-conjugated oligonucleotide to lymphoid organs where it was internalized by antigen-presenting cells (APCs). Moreover, we show that conjugation of the oligonucleotides to α-tocopherol results in micelle-like structure formation, which improved cellular internalization and enhanced immunomodulatory properties of the conjugates. In a mouse model of chronic HBV infection, targeting CpG oligonucleotide to lymphoid organs induced strong cellular and humoral immune responses that resulted in sustained control of the virus. Given the potency and tolerability of an α-tocopherol-conjugated CpG oligonucleotide, this modality could potentially be broadly applied for therapeutic vaccine development.

2.
BMC Res Notes ; 9(1): 444, 2016 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-27629829

RESUMEN

BACKGROUND: Newly proliferated oligodendrocyte precursor cells (OPCs) migrate and surround lesions of patients with multiple sclerosis (MS) and other demyelinating diseases, but fail to differentiate into oligodendrocytes (OLs) and remyelinate remaining viable axons. The abundance of secreted inflammatory factors within and surrounding these lesions likely plays a major inhibitory role, promoting cell death and preventing OL differentiation and axon remyelination. To identify clinical candidate compounds that may protect existing and differentiating OLs in patients, we have developed a high throughput screening (HTS) assay that utilizes purified rat OPCs. RESULTS: Using a fluorescent indicator of cell viability coupled with image quantification, we developed an assay to allow the identification of compounds that promote OL viability and differentiation in the presence of the synergistic inflammatory cytokines, tumor necrosis factor α and interferon-γ. We have utilized this assay to screen the NIH clinical collection library and identify compounds that protect OLs and promote OL differentiation in the presence of these inflammatory cytokines. CONCLUSION: This primary OL-based cytokine protection assay is adaptable for HTS and may be easily modified for profiling of compounds in the presence of other potentially inhibitory molecules found in MS lesions. This assay should be of use to those interested in identifying drugs for the treatment of MS and other demyelinating diseases.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Oligodendroglía/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Inflamación , Interferón gamma/metabolismo , Masculino , Esclerosis Múltiple/patología , Oligodendroglía/citología , Oligodendroglía/metabolismo , Ratas , Factor de Necrosis Tumoral alfa/metabolismo
3.
BMC Res Notes ; 9(1): 419, 2016 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-27592856

RESUMEN

BACKGROUND: Multiple sclerosis is caused by an autoimmune response resulting in demyelination and neural degeneration. The adult central nervous system has the capacity to remyelinate axons in part through the generation of new oligodendrocytes (OLs). To identify clinical candidate compounds that may promote remyelination, we have developed a high throughput screening (HTS) assay to identify compounds that promote the differentiation of oligodendrocyte precursor cells (OPCs) into OLs. RESULTS: Using acutely dissociated and purified rat OPCs coupled with immunofluorescent image quantification, we have developed an OL differentiation assay. We have validated this assay with a known promoter of differentiation, thyroid hormone, and subsequently used the assay to screen the NIH clinical collection library. We have identified twenty-seven hit compounds which were validated by dose response analysis and the generation of half maximal effective concentration (EC50) values allowed for the ranking of efficacy. The assay identified novel promoters of OL differentiation which we attribute to (1) the incorporation of an OL toxicity pre-screen to allow lowering the concentrations of toxic compounds and (2) the utilization of freshly purified, non-passaged OPCs. These features set our assay apart from other OL differentiation assays used for drug discovery efforts. CONCLUSIONS: This acute primary OL-based differentiation assay should be of use to those interested in screening large compound libraries for the identification of drugs for the treatment of MS and other demyelinating diseases.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Oligodendroglía/citología , Oligodendroglía/efectos de los fármacos , Células Madre/efectos de los fármacos , Animales , Técnicas In Vitro , Esclerosis Múltiple/tratamiento farmacológico , Ratas , Células Madre/citología
4.
BMC Neurosci ; 17: 16, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-27103572

RESUMEN

BACKGROUND: Regeneration of new myelin is impaired in persistent multiple sclerosis (MS) lesions, leaving neurons unable to function properly and subject to further degeneration. Current MS therapies attempt to ameliorate autoimmune-mediated demyelination, but none directly promote the regeneration of lost and damaged myelin of the central nervous system (CNS). Development of new drugs that stimulate remyelination has been hampered by the inability to evaluate axonal myelination in a rapid CNS culture system. RESULTS: We established a high throughput cell-based assay to identify compounds that promote myelination. Culture methods were developed for initiating myelination in vitro using primary embryonic rat cortical cells. We developed an immunofluorescent phenotypic image analysis method to quantify the morphological alignment of myelin characteristic of the initiation of myelination. Using γ-secretase inhibitors as promoters of myelination, the optimal growth, time course and compound treatment conditions were established in a 96 well plate format. We have characterized the cortical myelination assay by evaluating the cellular composition of the cultures and expression of markers of differentiation over the time course of the assay. We have validated the assay scalability and consistency by screening the NIH clinical collection library of 727 compounds and identified ten compounds that promote myelination. Half maximal effective concentration (EC50) values for these compounds were determined to rank them according to potency. CONCLUSIONS: We have designed the first high capacity in vitro assay that assesses myelination of live axons. This assay will be ideal for screening large compound libraries to identify new drugs that stimulate myelination. Identification of agents capable of promoting the myelination of axons will likely lead to the development of new therapeutics for MS patients.


Asunto(s)
Axones/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Esclerosis Múltiple/tratamiento farmacológico , Vaina de Mielina/efectos de los fármacos , Regeneración Nerviosa/efectos de los fármacos , Secretasas de la Proteína Precursora del Amiloide/farmacología , Animales , Axones/fisiología , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Corteza Cerebral/fisiología , Medios de Cultivo Condicionados/farmacología , Técnica del Anticuerpo Fluorescente/métodos , Esclerosis Múltiple/fisiopatología , Vaina de Mielina/fisiología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/fisiología , Ratas
5.
J Pharmacol Toxicol Methods ; 61(1): 3-15, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19879948

RESUMEN

INTRODUCTION: The ability to predict the health effects resulting from drug or chemical exposure has been challenging due to the complexity of human biology. Approaches that detect and discriminate a broad range of mechanisms in testing formats that are predictive and yet cost-effective are needed. METHODS: Here, we evaluated the performance of BioMAP systems, primary human cell-based disease models, as a platform for characterization of chemical toxicity mechanisms. For this we tested a set of compounds with known or well-studied mechanisms in a panel of 8 BioMAP assays relevant to human respiratory, skin, immune and vascular exposure sites. RESULTS: We evaluated the ability to detect and distinguish compounds based on mechanisms of action, comparing the BioMAP activity profiles generated in a reduced sample number format to reference database profiles derived from multiple experiments. We also studied the role of BioMAP assay panel size and concentration effects, both of which were found to contribute to the ability to discriminate chemicals and mechanisms. DISCUSSION: Compounds with diverse mechanisms, including modulators of the NFkappaB pathway, microtubule function and mitochondrial activity, could be discriminated and classified into target and pathway mechanisms in both assay formats. Certain inhibitors of mitochondrial function, such as rotenone and sodium azide, but not others, were classified with inducers of endoplasmic reticulum stress, providing insight into the toxicity mechanisms of these agents. This method may have utility in classifying novel agents with unknown modes of action according to their effects on toxicity pathways.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Exposición a Riesgos Ambientales/efectos adversos , Noxas/clasificación , Preparaciones Farmacéuticas/clasificación , Pruebas de Toxicidad , Biomarcadores , Técnicas de Cultivo de Célula/economía , Células Cultivadas , Evaluación Preclínica de Medicamentos/métodos , Retículo Endoplásmico/efectos de los fármacos , Humanos , Microtúbulos/efectos de los fármacos , Mitocondrias/efectos de los fármacos , FN-kappa B/agonistas , FN-kappa B/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA