Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Vet Res ; 78(9): 1025-1035, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28836847

RESUMEN

OBJECTIVE To determine whether a maxillary nerve block via a modified infraorbital approach, applied before rhinoscopy and nasal biopsy of dogs, would decrease procedural nociception, minimize cardiorespiratory anesthetic effects, and improve recovery quality. ANIMALS 8 healthy adult hound-type dogs PROCEDURES In a crossover study, dogs received 0.5% bupivacaine (0.1 mL/kg) or an equivalent volume of saline (0.9% NaCl) solution as a maxillary nerve block via a modified infraorbital approach. A 5-cm, 20-gauge over-the-needle catheter was placed retrograde within each infraorbital canal, and bupivacaine or saline solution was administered into each pterygopalatine region. Rhinoscopy and nasal biopsy were performed. Variables monitored included heart rate, systolic arterial blood pressure (SAP), mean arterial blood pressure (MAP), diastolic arterial blood pressure (DAP), plasma cortisol and norepinephrine concentrations, purposeful movement, and pain scores. After a 14-day washout period, the other treatment was administered on the contralateral side, and rhinoscopy and nasal biopsy were repeated. RESULTS SAP, MAP, and DAP were significantly higher for the saline solution treatment than for the bupivacaine treatment, irrespective of the time point. Plasma cortisol concentrations after saline solution treatment were significantly higher 5 minutes after nasal biopsy than at biopsy. Heart rate, norepinephrine concentration, purposeful movement, and pain score were not significantly different between treatments. CONCLUSIONS AND CLINICAL RELEVANCE Maxillary nerve block via a modified infraorbital approach prior to rhinoscopy and nasal biopsy reduced procedural nociception as determined on the basis of blood pressures and plasma cortisol concentrations during anesthesia. These findings warrant further evaluation in dogs with nasal disease.


Asunto(s)
Endoscopía/veterinaria , Nervio Maxilar , Bloqueo Nervioso/veterinaria , Enfermedades Nasales/veterinaria , Anestesia Local , Animales , Biopsia/veterinaria , Presión Sanguínea , Bupivacaína/administración & dosificación , Estudios Cruzados , Perros , Endoscopía/métodos , Frecuencia Cardíaca , Inyecciones/veterinaria , Bloqueo Nervioso/métodos , Enfermedades Nasales/patología , Órbita/cirugía
2.
Chem Res Toxicol ; 28(4): 570-84, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25633958

RESUMEN

Bioaccumulative organohalogen chemicals, such as organochlorine (OC) insecticides, have been increasingly associated with disease etiology; however, the mechanistic link between chemical exposure and diseases, such as atherosclerosis, cancer, and diabetes, is complex and poorly defined. Systemic oxidative stress stemming from OC exposure might play a vital role in the development of these pathologies. Monocytes are important surveillance cells of the innate immune system that respond to extracellular signals possessing danger-associated molecular patterns by synthesizing oxyradicals, such as superoxide, for the purpose of combating infectious pathogens. We hypothesized that OC chemicals can be toxic to monocytes because of an inappropriate elevation in superoxide-derived reactive oxygen species (ROS) capable of causing cellular oxidative damage. Reactive oxyradicals are generated in monocytes in large part by NADPH oxidase (Nox). The present study was conducted to examine the ability of two chlorinated cyclodiene compounds, trans-nonachlor and dieldrin, as well as p,p'-DDE, a chlorinated alicyclic metabolite of DDT, to stimulate Nox activity in a human monocytic cell line and to elucidate the mechanisms for this activation. Human THP-1 monocytes treated with either trans-nonachlor or dieldrin (0.1-10 µM in the culture medium) exhibited elevated levels of intracellular ROS, as evidenced by complementary methods, including flow cytometry analysis using the probe DCFH-DA and hydroethidine-based fluorometric and UPLC-MS assays. In addition, the induced reactive oxygen flux caused by trans-nonachlor was also observed in two other cell lines, murine J774 macrophages and human HL-60 cells. The central role of Nox in OC-mediated oxidative stress was demonstrated by the attenuated superoxide production in OC-exposed monocytes treated with the Nox inhibitors diphenyleneiodonium and VAS-2870. Moreover, monocytes challenged with OCs exhibited increased phospho-p47(phox) levels and enhanced p47(phox) membrane localization compared to that in vehicle-treated cells. p47(phox) is a cytosolic regulatory subunit of Nox, and its phosphorylation and translocation to the NOX2 catalytic subunit in membranes is a requisite step for Nox assembly and activation. Dieldrin and trans-nonachlor treatments of monocytes also resulted in marked increases in arachidonic acid (AA) and eicosanoid production, which could be abrogated by the phospholipase A2 (PLA2) inhibitor arachidonoyltrifluoromethyl ketone (ATK) but not by calcium-independent PLA2 inhibitor bromoenol lactone. This suggested that cytosolic PLA2 plays a crucial role in the induction of Nox activity by increasing the intracellular pool of AA that activates protein kinase C, which phosphorylates p47(phox). In addition, ATK also blocked OC-induced p47(phox) serine phosphorylation and attenuated ROS levels, which further supports the notion that the AA pool liberated by cytosolic PLA2 is responsible for Nox activation. Together, the results suggest that trans-nonachlor and dieldrin are capable of increasing intracellular superoxide levels via a Nox-dependent mechanism that relies on elevated intracellular AA levels. These findings are significant because chronic activation of monocytes by environmental toxicants might contribute to pathogenic oxidative stress and inflammation.


Asunto(s)
Ácido Araquidónico/metabolismo , Hidrocarburos Clorados/toxicidad , Insecticidas/toxicidad , Monocitos/efectos de los fármacos , NADPH Oxidasas/metabolismo , Fosfolipasas A2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Línea Celular , Humanos , Ratones , Monocitos/enzimología , Monocitos/metabolismo , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA