Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 33(10): 11270-11283, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31307210

RESUMEN

Ileal interposition (IT) is a surgical procedure that increases the delivery of incompletely digested nutrients and biliary and pancreatic secretions to the distal intestinal mucosa. Here, we investigated the metabolic impact of this intervention in 2-mo-old prediabetic University of California, Davis type 2 diabetes mellitus rats by assessing liver gene expression at 1.5 mo post-IT surgery. Pathway analysis indicated decreased signaling via TGF-ß/Smad (a family of proteins named mothers against decapentaplegic homologs), peroxisome proliferator-activated receptor (PPAR), and PI3K-Akt-AMPK-mechanistic target of rapamycin, likely targeting hepatic stellate cells because differentiation and activation of these cells is associated with decreased signaling via PPAR and TGF-ß/Smad. IT surgery up-regulated the expression of genes involved in regulation of cholesterol and terpenoid syntheses and down-regulated those involved in glycerophospholipid metabolism [including cardiolipin (CL)], lipogenesis, and gluconeogenesis. Consistent with the down-regulation of the hepatic CL pathway, IT surgery produced a metabolic switch in liver, kidney cortex, and fat depots toward decreased mitochondrial fatty acid ß-oxidation, the process required to fuel high energy-demanding pathways (e.g., gluconeogenesis and glyceroneogenesis), whereas opposite effects were observed in skeletal and cardiac muscles. This study demonstrates for the first time the presence of metabolic pathways that complement the effects of IT surgery to maximize its benefits and potentially identify similarly effective, durable, and less invasive therapeutic options for metabolic disease, including inhibitors of TGF-ß signaling.-Hung, C., Napoli, E., Ross-Inta, C., Graham, J., Flores-Torres, A. L., Stanhope, K. L., Froment, P., Havel, P. J., Giulivi, C. Ileal interposition surgery targets the hepatic TGF-ß pathway, influencing gluconeogenesis and mitochondrial bioenergetics in the UCD-T2DM rat model of diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/fisiología , Gluconeogénesis/fisiología , Íleon/metabolismo , Hígado/metabolismo , Mitocondrias/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Glucemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Modelos Animales de Enfermedad , Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Íleon/fisiopatología , Insulina/metabolismo , Metabolismo de los Lípidos/fisiología , Hígado/fisiopatología , Masculino , Mitocondrias/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Proteínas Smad/metabolismo
2.
Front Neurosci ; 10: 159, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27147951

RESUMEN

Fragile X premutation alleles have 55-200 CGG repeats in the 5' UTR of the FMR1 gene. Altered zinc (Zn) homeostasis has been reported in fibroblasts from >60 years old premutation carriers, in which Zn supplementation significantly restored Zn-dependent mitochondrial protein import/processing and function. Given that mitochondria play a critical role in synaptic transmission, brain function, and cognition, we tested FMRP protein expression, brain bioenergetics, and expression of the Zn-dependent synaptic scaffolding protein SH3 and multiple ankyrin repeat domains 3 (Shank3) in a knock-in (KI) premutation mouse model with 180 CGG repeats. Mitochondrial outcomes correlated with FMRP protein expression (but not FMR1 gene expression) in KI mice and human fibroblasts from carriers of the pre- and full-mutation. Significant deficits in brain bioenergetics, Zn levels, and Shank3 protein expression were observed in the Zn-rich regions KI hippocampus and cerebellum at PND21, with some of these effects lasting into adulthood (PND210). A strong genotype × age interaction was observed for most of the outcomes tested in hippocampus and cerebellum, whereas in cortex, age played a major role. Given that the most significant effects were observed at the end of the lactation period, we hypothesized that KI milk might have a role at compounding the deleterious effects on the FMR1 genetic background. A higher gene expression of ZnT4 and ZnT6, Zn transporters abundant in brain and lactating mammary glands, was observed in the latter tissue of KI dams. A cross-fostering experiment allowed improving cortex bioenergetics in KI pups nursing on WT milk. Conversely, WT pups nursing on KI milk showed deficits in hippocampus and cerebellum bioenergetics. A highly significant milk type × genotype interaction was observed for all three-brain regions, being cortex the most influenced. Finally, lower milk-Zn levels were recorded in milk from lactating women carrying the premutation as well as other Zn-related outcomes (Zn-dependent alkaline phosphatase activity and lactose biosynthesis-whose limiting step is the Zn-dependent ß-1,4-galactosyltransferase). In premutation carriers, altered Zn homeostasis, brain bioenergetics and Shank3 levels could be compounded by Zn-deficient milk, increasing the risk of developing emotional and neurological/cognitive problems and/or FXTAS later in life.

3.
Science ; 307(5716): 1776-8, 2005 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-15774759

RESUMEN

Recognizing a deficiency of indispensable amino acids (IAAs) for protein synthesis is vital for dietary selection in metazoans, including humans. Cells in the brain's anterior piriform cortex (APC) are sensitive to IAA deficiency, signaling diet rejection and foraging for complementary IAA sources, but the mechanism is unknown. Here we report that the mechanism for recognizing IAA-deficient foods follows the conserved general control (GC) system, wherein uncharged transfer RNA induces phosphorylation of eukaryotic initiation factor 2 (eIF2) via the GC nonderepressing 2 (GCN2) kinase. Thus, a basic mechanism of nutritional stress management functions in mammalian brain to guide food selection for survival.


Asunto(s)
Aminoácidos Esenciales/administración & dosificación , Aminoácidos Esenciales/deficiencia , Factor 2 Eucariótico de Iniciación/metabolismo , Alimentos , Leucina/análogos & derivados , Vías Olfatorias/metabolismo , Proteínas Quinasas/metabolismo , ARN de Transferencia/metabolismo , Acilación , Aminoácidos Esenciales/análisis , Animales , Dieta , Ingestión de Alimentos , Preferencias Alimentarias , Leucina/administración & dosificación , Leucina/farmacología , Ratones , Ratones Endogámicos C57BL , Fosforilación , Proteínas Serina-Treonina Quinasas , Ratas , Estereoisomerismo , Treonina/administración & dosificación , eIF-2 Quinasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA