Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Neurobiol Dis ; 133: 104537, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31454548

RESUMEN

The initiation and maintenance phases of cholinergic status epilepticus (SE) are associated with maladaptive trafficking of synaptic GABAA and glutamate receptors. The resulting pharmacoresistance reflects a decrease in synaptic GABAA receptors and increase in NMDA and AMPA receptors, which tilt the balance between inhibition and excitation in favor of the latter. If these changes are important to the pathophysiology of SE, both should be treated, and blocking their consequences should have therapeutic potential. We used a model of benzodiazepine-refractory SE (RSE) (Tetz et al., 2006) and a model of soman-induced SE to test this hypothesis. Treatment of RSE with combinations of the GABAAR agonists midazolam or diazepam and the NMDAR antagonists MK-801 or ketamine terminated RSE unresponsive to high-dose monotherapy with benzodiazepines, ketamine or other antiepileptic drugs (AEDs). It also reduced RSE-associated neuronal injury, spatial memory deficits and the occurrence of spontaneous recurrent seizures (SRS), tested several weeks after SE. Treatment of sc soman-induced SE similarly showed much greater reduction of EEG power by a combination of midazolam with ketamine, compared to midazolam monotherapy. When treating late (40 min after seizure onset), there may not be enough synaptic GABAAR left to be able to restore inhibition with maximal GABAAR stimulation, and further benefit is derived from the addition of an AED which increases inhibition or reduces excitation by a non-GABAergic mechanism. The midazolam-ketamine-valproate combination is effective in terminating RSE. 3-D isobolograms demonstrate positive cooperativity between midazolam, ketamine and valproate, without any interaction between the toxicity of these drugs, so that the therapeutic index is increased by combination therapy between GABAAR agonist, NMDAR antagonist and selective AEDs. We compared this drug combination based on the receptor trafficking hypothesis to treatments based on clinical practice. The midazolam-ketamine-valproate combination is far more effective in stopping RSE than the midazolam-fosphenytoin-valproate combination inspired from clinical guidelines. Furthermore, sequential administration of midazolam, ketamine and valproate is far less effective than simultaneous treatment with the same drugs at the same dose. These data suggest that we should re-evaluate our traditional treatment of RSE, and that treatment should be based on pathophysiology. The search for a better drug has to deal with the fact that most monotherapy leaves half the problem untreated. The search for a better benzodiazepine should acknowledge the main cause of pharmacoresistance, which is loss of synaptic GABAAR. Future clinical trials should consider treating both the failure of inhibition and the runaway excitation which characterize RSE, and should include an early polytherapy arm.


Asunto(s)
Anticonvulsivantes/farmacología , Inhibidores de la Colinesterasa/toxicidad , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , Animales , Quimioterapia Combinada/métodos , Ketamina/farmacología , Masculino , Midazolam/farmacología , Agonistas Muscarínicos/toxicidad , Agentes Nerviosos/toxicidad , Pilocarpina/toxicidad , Ratas , Ratas Sprague-Dawley , Soman/toxicidad , Ácido Valproico/farmacología
2.
Epilepsy Behav ; 101(Pt B): 106367, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31636007

RESUMEN

The transition from single seizures to status epilepticus (SE) is associated with malaptive trafficking of synaptic gamma-aminobutyric acid (GABAA) and glutamate receptors. The receptor trafficking hypothesis proposes that these changes are key events in the development of pharmacoresistance to antiepileptic drugs (AEDs) during SE, and that blocking their expression will help control drug-refractory SE (RSE). We tested this hypothesis in a model of SE induced by very high-dose lithium and pilocarpine (RSE), and in a model of SE induced by sc soman. Both models are refractory to benzodiazepines when treated 40 min after seizure onset. Our treatments aimed to correct the loss of inhibition because of SE-associated internalization of synaptic GABAA receptors (GABAAR), using an allosteric GABAAR modulator, sometimes supplemented by an AED acting at a nonbenzodiazepine site. At the same time, we reduced excitation because of increased synaptic localization of NMDA and AMPA (?-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate) receptors (NMDAR, AMPAR (?-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, N-methyl-D-aspartate receptors)) with an NMDAR channel blocker, since AMPAR changes are NMDAR-dependent. Treatment of RSE with combinations of the GABAAR allosteric modulators midazolam or diazepam and the NMDAR antagonists dizocilpine or ketamine terminated RSE unresponsive to high-dose monotherapy. It also reduced RSE-associated neuronal injury, spatial memory deficits, and the occurrence of spontaneous recurrent seizures (SRS), tested several weeks after SE. Treatment of soman-induced SE also reduced seizures, behavioral deficits, and epileptogenesis. Addition of an AED further improved seizure outcome in both models. Three-dimensional isobolograms demonstrated positive cooperativity between midazolam, ketamine, and valproate, without any interaction between the toxicity of these drugs, so that the therapeutic index was increased by combination therapy. The midazolam-ketamine-valproate combination based on the receptor trafficking hypothesis was far more effective in stopping RSE than the midazolam-fosphenytoin-valproate combination inspired from clinical guidelines for the treatment of SE. Furthermore, sequential administration of midazolam, ketamine, and valproate was far less effective than simultaneous treatment with the same drugs at the same dose. These data suggest that treatment of RSE should be based at least in part on its pathophysiology. The search for a better treatment should focus on the cause of pharmacoresistance, which is loss of synaptic GABAAR and gain of synaptic glutamate receptors. Both need to be treated. Monotherapy addresses only half the problem. Improved pharmacokinetics will not help pharmacoresistance because of loss of receptors. Waiting for one drug to fail before giving the second drugs gives pharmacoresistance time to develop. Future clinical trials should consider treating both the failure of inhibition and the runaway excitation which characterize RSE, and should include an early polytherapy arm. This article is part of the Special Issue "Proceedings of the 7th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures".


Asunto(s)
Anticonvulsivantes/administración & dosificación , Benzodiazepinas/administración & dosificación , Epilepsia Refractaria/tratamiento farmacológico , Estado Epiléptico/tratamiento farmacológico , Animales , Esquema de Medicación , Epilepsia Refractaria/inducido químicamente , Epilepsia Refractaria/fisiopatología , Quimioterapia Combinada , Humanos , Midazolam/administración & dosificación , Pilocarpina/toxicidad , Receptores de GABA-A/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Estado Epiléptico/inducido químicamente , Estado Epiléptico/fisiopatología , Ácido Valproico/administración & dosificación
3.
Epilepsy Behav ; 24(4): 391-8, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22704998

RESUMEN

The role of the substantia nigra pars reticulata (SNPr) and superior colliculus (SC) network in rat strains susceptible to audiogenic seizures still remain underexplored in epileptology. In a previous study from our laboratory, the GABAergic drugs bicuculline (BIC) and muscimol (MUS) were microinjected into the deep layers of either the anterior SC (aSC) or the posterior SC (pSC) in animals of the Wistar audiogenic rat (WAR) strain submitted to acoustic stimulation, in which simultaneous electroencephalographic (EEG) recording of the aSC, pSC, SNPr and striatum was performed. Only MUS microinjected into the pSC blocked audiogenic seizures. In the present study, we expanded upon these previous results using the retrograde tracer Fluorogold (FG) microinjected into the aSC and pSC in conjunction with quantitative EEG analysis (wavelet transform), in the search for mechanisms associated with the susceptibility of this inbred strain to acoustic stimulation. Our hypothesis was that the WAR strain would have different connectivity between specific subareas of the superior colliculus and the SNPr when compared with resistant Wistar animals and that these connections would lead to altered behavior of this network during audiogenic seizures. Wavelet analysis showed that the only treatment with an anticonvulsant effect was MUS microinjected into the pSC region, and this treatment induced a sustained oscillation in the theta band only in the SNPr and in the pSC. These data suggest that in WAR animals, there are at least two subcortical loops and that the one involved in audiogenic seizure susceptibility appears to be the pSC-SNPr circuit. We also found that WARs presented an increase in the number of FG+ projections from the posterior SNPr to both the aSC and pSC (primarily to the pSC), with both acting as proconvulsant nuclei when compared with Wistar rats. We concluded that these two different subcortical loops within the basal ganglia are probably a consequence of the WAR genetic background.


Asunto(s)
Ondas Encefálicas/fisiología , Epilepsia Refleja/patología , Epilepsia Refleja/fisiopatología , Sustancia Negra/fisiología , Colículos Superiores/fisiología , Ácido gamma-Aminobutírico/metabolismo , Estimulación Acústica/efectos adversos , Animales , Conducta Animal/efectos de los fármacos , Bicuculina/farmacología , Ondas Encefálicas/efectos de los fármacos , Modelos Animales de Enfermedad , Estimulación Eléctrica/efectos adversos , Epilepsia Refleja/tratamiento farmacológico , GABAérgicos/farmacología , Masculino , Microinyecciones , Muscimol/farmacología , Muscimol/uso terapéutico , Vías Nerviosas/fisiología , Ratas , Ratas Mutantes , Ratas Wistar , Estilbamidinas , Colículos Superiores/efectos de los fármacos
4.
Epilepsy Behav ; 22(2): 191-9, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21820967

RESUMEN

The superior colliculus (SC), substantia nigra pars reticulata (SNPr), and striatum have been characterized as important structures involved in the modulation of seizure activity. In the current study, bicuculline (GABA(A) antagonist) and muscimol (GABA(A) agonist) were microinjected into the deep layers of either the anterior SC (aSC) or posterior SC (pSC) of genetically developed Wistar audiogenic rats. Behavior and EEG activity were studied simultaneously. Only muscimol microinjected into the pSC had behavioral and EEG anticonvulsant effects in Wistar audiogenic rats, eliciting EEG oscillation changes in both SNPr and pSC, primarily during tonic seizures. The SC of Wistar audiogenic rats thus comprises two functionally different subregions, pSC and aSC, defined by distinct behavioral and EEG features. The pSC has proconvulsant audiogenic seizure activity in Wistar audiogenic rats. Our data suggest that this phenomenon may be a consequence of the genetic selection of the Wistar audiogenic rat strain.


Asunto(s)
Cuerpo Estriado/fisiología , Convulsiones/etiología , Convulsiones/patología , Sustancia Negra/fisiología , Ácido gamma-Aminobutírico/metabolismo , Estimulación Acústica/efectos adversos , Análisis de Varianza , Animales , Bicuculina/farmacología , Electroencefalografía , Agonistas de Receptores de GABA-A/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Excitación Neurológica , Masculino , Muscimol/farmacología , Vías Nerviosas/fisiología , Ratas , Ratas Wistar , Colículos Superiores/efectos de los fármacos , Grabación en Video
5.
Epilepsia ; 50(12): 2563-74, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19490050

RESUMEN

PURPOSE: The role of the superior colliculus (SC) in seizure expression is controversial and appears to be dependent upon the epilepsy model. This study shows the effect of disconnection between SC deep layers and adjacent tissues in the expression of acute and kindling seizures. METHODS: Subcollicular transections, ablation of SC superficial and deep layers, and ablation of only the cerebral cortex were evaluated in the Wistar audiogenic rat (WAR) strain during acute and kindled audiogenic seizures. The audiogenic seizure kindling protocol started 4 days after surgeries, with two acoustic stimuli per day for 10 days. Acute audiogenic seizures were evaluated by a categorized seizure severity midbrain index (cSI) and kindled seizures by a severity limbic index (LI). RESULTS: All subcollicular transections reaching the deep layers of the SC abolished audiogenic seizures or significantly decreased cSI. In the unlesioned kindled group, a reciprocal relationship between limbic and brainstem pattern of seizures was seen. The increased number of stimuli provoked an audiogenic kindling phenomenon. Ablation of the entire SC (ablation group) or of the cerebral cortex only (ctx-operated group) hampered the acquisition of limbic behaviors. There was no difference in cSI and LI between the ctx-operated and ablation groups, but there was a difference between ctx-operated and the unlesioned kindled group. There was also no difference in cSI between SC deep layer transection and ablation groups. Results of histologic analyses were similar for acute and kindled audiogenic seizure groups. CONCLUSIONS: SC deep layers are involved in the expression of acute and kindled audiogenic seizure, and the cerebral cortex is essential for audiogenic kindling development.


Asunto(s)
Modelos Animales de Enfermedad , Epilepsia Refleja/fisiopatología , Excitación Neurológica/fisiología , Colículos Superiores/fisiopatología , Estimulación Acústica , Enfermedad Aguda , Animales , Mapeo Encefálico , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Decorticación Cerebral/métodos , Electroencefalografía , Epilepsia Refleja/diagnóstico , Epilepsia Refleja/patología , Femenino , Lateralidad Funcional/fisiología , Sistema Límbico/fisiopatología , Masculino , Mesencéfalo/fisiopatología , Ratas , Ratas Wistar , Índice de Severidad de la Enfermedad , Colículos Superiores/patología , Colículos Superiores/cirugía
6.
Epilepsy Res ; 72(2-3): 192-208, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17150334

RESUMEN

The importance of the substantia nigra pars reticulata (SNPr), striatum (STR) and superior colicullus (SC) in the blockade of experimental seizures is well known. But, in audiogenic seizures (brainstem tonic-clonic seizures), the anticonvulsant activity of these nuclei is still controversial. In the present study we aimed to analyze the STR-SNPr-CS circuitry in the audiogenic seizures of Wistar audiogenic rat (WAR). Behavioral and electroencephalographic (EEG) data were collected from WARs under no treatment or injection with systemic (phenobarbital) or intracerebral (intranigral) drugs (muscimol and phenobarbital). The main EEG frequency oscillation of STR, SNPr and SC seen before, during and after audiogenic seizures or during seizure protection, was determinated with wavelet spectral analyses. This method allows the association between behavior and EEG (video-EEG). Audiogenic seizures last only for half a minute in average, suggesting that the interruptions of seizures are probably not due to exhaustion. Systemic phenobarbital caused an acute and dose-dependent behavioral and EEGraphic anticonvulsant effect both in WARs. The dose of phenobarbital 15mg/kg protected animals almost completely, without side effects such as ataxia and sedation. In our data, this endogenous "natural" seizure blockade (or termination) seems to be similar to the "forced" seizure abolition, like the one caused by a systemic non-ataxic phenobarbital dose, because in both cases an intense decrease in the EEG main frequency oscillation can be seen in SNPr and SC. Intranigral phenobarbital or muscimol did not protect animals, and actually induced an increase in the main EEG frequency oscillation in SC. The main finding of the present study is that, in contrast to what is well believed about the incapacity to control audiogenic seizures by the striato-nigro-tectal circuitry, we collected here evidences that these nuclei are involved in the ability to block these seizures. However, the striato-nigro-tectal circuitry in WARs, a genetically developed strain, seems to have different functional mechanisms when compared with normal rats.


Asunto(s)
Anticonvulsivantes/farmacología , Cuerpo Estriado/efectos de los fármacos , Fenobarbital/farmacología , Convulsiones/prevención & control , Sustancia Negra/efectos de los fármacos , Colículos Superiores/efectos de los fármacos , Estimulación Acústica , Animales , Anticonvulsivantes/administración & dosificación , Anticonvulsivantes/uso terapéutico , Conducta Animal , Cuerpo Estriado/fisiopatología , Electrodos Implantados , Electroencefalografía , Epilepsia Refleja/tratamiento farmacológico , Femenino , Masculino , Fenobarbital/administración & dosificación , Fenobarbital/uso terapéutico , Ratas , Ratas Wistar , Sustancia Negra/fisiopatología , Colículos Superiores/fisiopatología , Grabación en Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA