Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Toxicol Lett ; 339: 23-31, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33359558

RESUMEN

Interesterified fat (IF) currently substitutes the hydrogenated vegetable fat (HVF) in processed foods. However, the IF consumption impact on the central nervous system (CNS) has been poorly studied. The current study investigated connections between IF chronic consumption and locomotor impairments in early life period and adulthood of rats and access brain molecular targets related to behavior changes in adulthood offspring. During pregnancy and lactation, female rats received soybean oil (SO) or IF and their male pups received the same maternal supplementation from weaning until adulthood. Pups' motor ability and locomotor activity in adulthood were evaluated. In the adult offspring striatum, dopaminergic targets, glial cell line-derived neurotrophic factor (GDFN) and lipid profile were quantified. Pups from IF supplementation group presented impaired learning concerning complex motor skill and sensorimotor behavior. The same animals showed decreased locomotion in adulthood. Moreover, IF group showed decreased immunoreactivity of all dopaminergic targets evaluated and GDNF, along with important changes in FA composition in striatum. This study shows that the brain modifications induce by IF consumption resulted in impaired motor control in pups and decreased locomotion in adult animals. Other studies about health damages induced by IF consumption may have a contribution from our current outcomes.


Asunto(s)
Encéfalo/metabolismo , Grasas de la Dieta/efectos adversos , Locomoción/fisiología , Actividad Motora/fisiología , Sistema Nervioso/metabolismo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ácidos Grasos trans/efectos adversos , Factores de Edad , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Grasas de la Dieta/metabolismo , Femenino , Humanos , Fenómenos Fisiologicos Nutricionales Maternos , Modelos Animales , Fenómenos Fisiológicos del Sistema Nervioso , Embarazo , Ratas , Ácidos Grasos trans/metabolismo
2.
Behav Brain Res ; 374: 112119, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31374223

RESUMEN

Haloperidol (Hal) is an antipsychotic related to movement disorders. Magnesium (Mg) showed benefits on orofacial dyskinesia (OD), suggesting its involvement with N-methyl-D-aspartate receptors (NMDAR) since it acts blocking calcium channels. Comparisons between nifedipine (NIF; a calcium channel blocker) and Mg were performed to establish the Mg mechanism. Male rats concomitantly received Hal and Mg or NIF for 28 days, and OD behaviors were weekly assessed. Both Mg and NIF decreased Hal-induced OD. Hal increased Ca2+-ATPase activity in the striatum, and Mg reversed it. In the cortex, both Mg and NIF decreased such activity. Dopaminergic and glutamatergic immunoreactivity were modified by Hal and treatments: i) in the cortex: Hal reduced D1R and D2R, increasing NMDAR immunoreactivity. Mg and NIF reversed this Hal influence on D1R and NMDAR, while only Mg reversed Hal effects on D2R levels; ii) in the striatum: Hal decreased D2R and increased NMDAR while Mg and NIF decreased D1R and reversed the Hal-induced decreasing D2R levels. Only Mg reversed the Hal-induced increasing NMDAR levels; iii) in the substantia nigra (SN): while Hal increased D1R, D2R, and NMDAR, both Mg and NIF reversed this influence on D2R, but only Mg reversed the Hal-influence on D1R levels. Only NIF reversed the Hal effects on NMDAR immunoreactivity. These findings allow us to propose that Mg may be useful to minimize Hal-induced movement disturbances. Mg molecular mechanism seems to be involved with a calcium channel blocker because the NIF group showed less expressive effects than the Mg group.


Asunto(s)
Discinesias/tratamiento farmacológico , Haloperidol/farmacología , Magnesio/farmacología , Animales , Antipsicóticos/farmacología , Encéfalo/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Cuerpo Estriado/metabolismo , Haloperidol/efectos adversos , Magnesio/metabolismo , Masculino , Movimiento/efectos de los fármacos , Trastornos del Movimiento/tratamiento farmacológico , Neostriado/metabolismo , Nifedipino/farmacología , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Sustancia Negra/metabolismo
3.
J Nutr Biochem ; 59: 104-113, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29986304

RESUMEN

A balanced intake of fatty acids (FA) of both omega-6 (n-6) and -3 (n-3) series is essential for memory. The Mediterranean diet (MD), rich in n-3 polyunsaturated FA (PUFA) and low n-6/n-3 PUFA ratio, has shown beneficial influences on health. Inversely, the Western diet contains saturated fats, including hydrogenated vegetable fat (HVF, rich in trans fat) and interesterified fat (IF), making the n-6/n-3 PUFA ratio high. Due to the health impairments caused by HVF, it has been replaced by IF in processed foods. We compared an MD (balanced n-6/n-3 PUFA ratio) with Western diets 1 (WD1, rich in trans fat) and 2 (WD2, rich in IF) on memory process per se and following scopolamine (SCO) administration, which induces amnesia in rats. While MD exerted protective effects, WD1 and WD2 showed declined memory per se, showing higher susceptibility to SCO-induced memory deficits. In addition, WD1 and WD2 showed increased proinflammatory cytokines [tumor necrosis factor-α, interleukin (IL)-1ß, IL-6] and decreased anti-inflammatory cytokines (IL-10) in plasma. IL-1ß was higher in the hippocampus of WD1, which was reflected on histological assessments. Significant correlations between cognitive decline and inflammatory markers reinforce our hypothesis: MD-like fats may act preventively on cognitive loss, while WD-like fats may facilitate this.


Asunto(s)
Dieta Mediterránea , Dieta Occidental , Grasas de la Dieta/efectos adversos , Trastornos de la Memoria/etiología , Animales , Biomarcadores/metabolismo , Peso Corporal/efectos de los fármacos , Citocinas/sangre , Citocinas/metabolismo , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-6/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Inflamación/etiología , Masculino , Ratas Wistar , Escopolamina/efectos adversos
4.
Toxicol Lett ; 276: 122-128, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28528080

RESUMEN

In recent years, interesterified fat (IF) has been used to replace hydrogenated vegetable fat (HVF), rich in trans isomers, being found in processed foods. Studies involving IF have shown deleterious influences on the metabolic system, similarly to HVF, whereas no studies regarding its influence on the central nervous system (CNS) were performed. Rats from first generation born and maintained under supplementation (3g/Kg, p.o.) of soybean-oil or IF until adulthood were assessed on memory, biochemical and molecular markers in the hippocampus. IF group showed higher saturated fatty acids and linoleic acid and lower docosahexaenoic acid incorporation in the hippocampus. In addition, IF supplementation impaired short and long-term memory, which were related to increased reactive species generation and protein carbonyl levels, decreased catalase activity, BDNF and TrkB levels in the hippocampus. To the best of our knowledge, this is the first study to show that lifelong IF consumption may be related to brain oxidative damage, memory impairments and neurotrophins modifications, which collectively may be present indifferent neurological disorders. In fact, the use of IF in foods was intended to avoid damage from HVF consumption; however this substitute should be urgently reviewed, since this fat can be as harmful as trans fat.


Asunto(s)
Grasas de la Dieta/toxicidad , Hipocampo/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Triglicéridos/toxicidad , Animales , Conducta Animal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Catalasa/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Ácido Linoleico/metabolismo , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/psicología , Memoria a Largo Plazo/efectos de los fármacos , Memoria a Corto Plazo/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Carbonilación Proteica/efectos de los fármacos , Precursores de Proteínas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Ratas Wistar , Receptor trkB , Reconocimiento en Psicología/efectos de los fármacos , Medición de Riesgo
5.
Physiol Behav ; 169: 114-123, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27864043

RESUMEN

This study aimed to assess the influence of maternal dietary fat intake during pregnancy or lactation on memory of adult offspring after chronic mild stress (CMS) exposure. Female Wistar rats were supplemented daily with soybean oil/fish oil (SO/FO) or hydrogenated vegetable fat (HVF) by oral gavage (3.0g/kg body weight) during pregnancy or lactation. On post-natal day (PND) 60, half of the animals were exposed to CMS following behavioral assessments. While the adult offspring born under influence of SO/FO and HVF supplementations during pregnancy showed higher levels of n-3 and n-6 fatty acids (FA) series DHA and ARA metabolites, respectively, in the hippocampus, adult offspring born from supplemented dams during lactation showed higher levels of their precursors: ALA and LA. However, only HVF supplementation allowed TFA incorporation of adult offspring, and levels were higher in lactation period. Adult offspring born from dams supplemented with trans fat in both pregnancy and lactation showed short and long-term memory impairments before and after CMS. Furthermore, our study also showed higher memory impairment in offspring born from HVF-supplemented dams during lactation in comparison to pregnancy. BDNF expression was increased by stress exposure in offspring from both SO/FO- and HVF-supplemented dams during pregnancy. In addition, offspring from HVF-supplemented dams showed decreased TrkB expression in both supplemented periods, regardless of stress exposure. In conclusion, these findings show for the first time that the type of dietary FA as well as the period of brain development is able to change FA incorporation in brain neural membranes.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/metabolismo , Trastornos de la Memoria/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Receptor trkB/metabolismo , Estrés Psicológico/patología , Ácidos Grasos trans/toxicidad , Análisis de Varianza , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Corticosterona/metabolismo , Ácidos Grasos/metabolismo , Femenino , Lactancia/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Embarazo , ARN Mensajero/metabolismo , Ratas , Receptor trkB/genética , Reconocimiento en Psicología/efectos de los fármacos
6.
Behav Brain Res ; 320: 400-411, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27816557

RESUMEN

Chronic use of typical antipsychotic haloperidolis related to movement disturbances such as parkinsonism, akathisia and tardive dyskinesia which have been related to excitotoxicity in extrapyramidal brain areas, requiring their prevention and treatment. In the current study we evaluated the influence of the magnesium on prevention (for 28days before-), reversion (for 12days after-) and concomitant supplementation on haloperidol-induced movement disorders in rats. Sub-chronic haloperidol was related to orofacial dyskinesia (OD) and catalepsy development, increased generation of reactive species (RS) and levels of protein carbonyl (PC) in cortex, striatum and substantia nigra (SN) in all experimental protocols. When provided preventatively, Mg reduced the increase of OD and catalepsy time 14 and 7days after haloperidol administration, respectively. When supplemented after haloperidol-induced OD establishment, Mg reversed this behavior after 12days, while catalepsy was reversed after 6days of Mg supplementation.When Mg was concomitantly supplemented with haloperidol administration, OD and catalepsy were prevented. Moreover, Mg supplementation was able to prevent the RS generation in both cortex and SN, reducing PC levels in all brain areas evaluated. When supplemented after haloperidol, Mg reversed RS generation in cortex and striatum, decreasing PC levels in SN and striatum.The co-administration of haloperidol and Mg supplementation prevented RS generation in cortex, striatum and SN, and PC levels in the SN.These outcomes indicate that Mg supplementation may be a useful alternative to prevent movement disturbances resulting of classic antipsychotic pharmacotherapy as haloperidol.


Asunto(s)
Antipsicóticos/farmacología , Catalepsia/inducido químicamente , Catalepsia/tratamiento farmacológico , Discinesias/tratamiento farmacológico , Haloperidol/farmacología , Magnesio/farmacología , Análisis de Varianza , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Embrión de Pollo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Discinesias/etiología , Haloperidol/administración & dosificación , Masculino , Carbonilación Proteica/efectos de los fármacos , Ratas , Ratas Wistar , Factores de Tiempo
7.
Brain Res Bull ; 118: 78-81, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26393778

RESUMEN

PURPOSE: To evaluate the toxicity of chronic consumption of processed foods that are rich in trans fat on the lipid composition of brain membranes, as well as its functional repercussions. METHODS: A second generation of male rats born from mothers and grandmothers supplemented with soybean oil (SOC, an isocaloric control group) or hydrogenated vegetable fat (HVF, rich in TFA) (3g/kg; p.o.) were kept under oral treatment until 90 days of age, when they were exposed to an AMPH-induced model of mania. RESULTS: The HVF group presented 0.38% of TFA incorporation in the striatum, affecting Na(+)/K(+) ATPase activity, which was decreased per se and following AMPH-exposure. The HVF group also showed increased protein carbonyl (PC) and brain-derived neurotrophic factor (BDNF) mRNA levels after AMPH administration, while these oxidative and molecular changes were not observed in the other experimental groups. Additionally, a negative correlation between striatal Na(+)/K(+) ATPase activity and PC levels (r(2)=0.49) was observed. CONCLUSION: The prolonged consumption of trans fat allows TFA incorporation and increases striatal oxidative status, thus impairing the functionality of Na(+)/K(+)-ATPase and affecting molecular targets as BDNF mRNA. We hypothesized that the chronic intake of processed foods (rich in TFA) facilitates the development of neuropsychiatric diseases, particularly bipolar disorder.


Asunto(s)
Trastorno Bipolar/metabolismo , Encéfalo/metabolismo , ARN Mensajero/biosíntesis , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Ácidos Grasos trans/toxicidad , Anfetamina/farmacología , Animales , Trastorno Bipolar/inducido químicamente , Trastorno Bipolar/enzimología , Trastorno Bipolar/genética , Encéfalo/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Factor Neurotrófico Derivado del Encéfalo/genética , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Expresión Génica , Masculino , Membranas/metabolismo , Actividad Motora/efectos de los fármacos , Carbonilación Proteica , ARN Mensajero/genética , Ratas , Aceite de Soja/administración & dosificación , Ácidos Grasos trans/administración & dosificación , Ácidos Grasos trans/metabolismo
8.
Neurotox Res ; 28(4): 319-31, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26188494

RESUMEN

Amphetamine (AMPH) is an addictive psychostimulant drug whose use has been related to neurotoxicity. Experimentally, AMPH increases anxiety-like symptoms, showing addictive properties. In the last decades, the growing consumption of processed foods has provided an excess of saturated and trans fats in detriment of essential fatty acids, which may modify the lipid profile of brain membranes, thus modifying its permeability and dopaminergic neurotransmission. Here, we assessed the influence of brain incorporation of different fatty acids (FA) on AMPH self-administration. Three groups of young male rats were orally supplemented from weaning with a mixture of soybean oil (SO, rich in n-6 FA) and fish oil (FO, rich in n-3 FA), hydrogenated vegetable fat (HVF, rich in trans fatty acids--TFA), or water (control group). These animals were born from dams that were supplemented with the same fat from pregnancy to lactation. Anxiety-like symptoms and locomotor index were assessed in elevated plus maze and open-field (OF), respectively, while brain molecular expressions of dopaminergic receptors, dopamine transporter (DAT), and BDNF were determined in the cortex and hippocampus. HVF increased the frequency of AMPH self-administration and was associated with reinforcement and withdrawal signs as observed by increased anxiety-like symptoms. Contrarily, SO/FO decreased these parameters. Increased BDNF protein together with decreased DAT expression was observed in the hippocampus of HVF group. Based on these findings, our study points to a harmful influence of trans fats on drug addiction and craving symptoms, whose mechanism may be related to changes in the dopaminergic neurotransmission.


Asunto(s)
Anfetamina/farmacología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Comportamiento de Búsqueda de Drogas/fisiología , Ácidos Grasos trans/farmacología , Animales , Ansiedad/inducido químicamente , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Femenino , Aceites de Pescado/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Actividad Motora/efectos de los fármacos , Embarazo , Ratas , Ratas Wistar , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Autoadministración , Aceite de Soja/farmacología , Factores de Tiempo
9.
Biol Trace Elem Res ; 166(2): 163-72, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25686766

RESUMEN

Reserpine administration results in a predictable animal model of orofacial dyskinesia (OD) that has been largely used to access movement disturbances related to extrapyramidal oxidative damage. Here, OD was acutely induced by reserpine (two doses of 0.7 mg/kg subcutaneous (s.c.)), every other day for 3 days), which was administered after (experiment 1) and before (experiment 2) magnesium (Mg) supplementation (40 mg/kg/mL, peroral (p.o.)). In experiment 1, Mg was administered for 28 days before reserpine treatment, while in experiment 2, it was initiated 24 h after the last reserpine administration and was maintained for 10 consecutive days. Experiment 1 (prevention) showed that Mg supplementation was able to prevent reserpine-induced OD and catalepsy development. Mg was also able to prevent reactive species (RS) generation, thus preventing increase of protein carbonyl (PC) levels in both cortex and substantia nigra, but not in striatum. Experiment 2 (reversion) showed that Mg was able to decrease OD and catalepsy at all times assessed. In addition, Mg was able to decrease RS generation, with lower levels of PC in both cortex and striatum, but not in substantia nigra. These outcomes indicate that Mg is an important metal that should be present in the diet, since its intake is able to prevent and minimize the development of movement disorders closely related to oxidative damage in the extrapyramidal brain areas, such as OD.


Asunto(s)
Encéfalo/metabolismo , Magnesio/farmacología , Magnesio/uso terapéutico , Trastornos del Movimiento/tratamiento farmacológico , Animales , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Trastornos del Movimiento/etiología , Ratas , Ratas Wistar , Reserpina/toxicidad
10.
Photochem Photobiol ; 91(2): 424-30, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25600099

RESUMEN

The influence of trans fatty acids (TFA) on lipid profile, oxidative damage and mitochondrial function in the skin of rats exposed to ultraviolet radiation (UVR) was assessed. The first-generation offspring of female Wistar rats supplemented from pregnancy with either soybean oil (C-SO, rich in n-6 FA; control group) or hydrogenated vegetable fat (HVF, rich in TFA) were continued with the same supplements until adulthood, when half of each group was exposed to UVR for 12 weeks. The HVF group showed higher TFA cutaneous incorporation, increased protein carbonyl (PC) levels, decreased functionality of mitochondrial enzymes and antioxidant defenses of the skin. After UVR, the HVF group showed increased skin thickness and reactive species (RS) generation, with decreased skin antioxidant defenses. RS generation was positively correlated with skin thickness, wrinkles and PC levels. Once incorporated to skin, TFA make it more susceptible to developing UVR-induced disorders.


Asunto(s)
Suplementos Dietéticos , Mitocondrias/efectos de los fármacos , Aceites de Plantas/administración & dosificación , Envejecimiento de la Piel/efectos de los fármacos , Piel/efectos de los fármacos , Aceite de Soja/administración & dosificación , Animales , Antioxidantes/metabolismo , Catalasa/metabolismo , Femenino , Hidrogenación , Mitocondrias/efectos de la radiación , Embarazo , Carbonilación Proteica/efectos de los fármacos , Carbonilación Proteica/efectos de la radiación , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Piel/química , Piel/metabolismo , Piel/efectos de la radiación , Envejecimiento de la Piel/efectos de la radiación , Superóxido Dismutasa/metabolismo , Rayos Ultravioleta
11.
Toxicol Lett ; 232(1): 58-67, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25290576

RESUMEN

Chronic consumption of processed food causes structural changes in membrane phospholipids, affecting brain neurotransmission. Here we evaluated noxious influences of dietary fats over two generations of rats on amphetamine (AMPH)-conditioned place preference (CPP). Female rats received soybean oil (SO, rich in n-6 fatty acids (FA)), fish oil (FO, rich in n-3 FA) and hydrogenated vegetable fat (HVF, rich in trans fatty acids (TFA)) for two successive generations. Male pups from the 2nd generation were maintained on the same supplementation until 41 days of age, when they were conditioned with AMPH in CPP. While the FO group showed higher incorporation of n-3 polyunsaturated-FA (PUFA) in cortex/hippocampus, the HVF group showed TFA incorporation in these same brain areas. The SO and HVF groups showed AMPH-preference and anxiety-like symptoms during abstinence. Higher levels of protein carbonyl (PC) and lower levels of non-protein thiols (NPSH) were observed in cortex/hippocampus of the HVF group, indicating antioxidant defense system impairment. In contrast, the FO group showed no drug-preference and lower PC levels in cortex. Cortical PC was positively correlated with n-6/n-3 PUFA ratio, locomotion and anxiety-like behavior, and hippocampal PC was positively correlated with AMPH-preference, reinforcing connections between oxidative damage and AMPH-induced preference/abstinence behaviors. As brain incorporation of trans and n-6 PUFA modifies its physiological functions, it may facilitate drug addiction.


Asunto(s)
Trastornos Relacionados con Anfetaminas/etiología , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Ácidos Grasos Omega-3/toxicidad , Ácidos Grasos Omega-6/toxicidad , Estrés Oxidativo/efectos de los fármacos , Aceite de Soja/toxicidad , Ácidos Grasos trans/toxicidad , Factores de Edad , Trastornos Relacionados con Anfetaminas/fisiopatología , Trastornos Relacionados con Anfetaminas/psicología , Animales , Antioxidantes/metabolismo , Ansiedad/inducido químicamente , Ansiedad/psicología , Encéfalo/metabolismo , Encéfalo/fisiopatología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Ácidos Grasos Omega-3/administración & dosificación , Femenino , Edad Gestacional , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatología , Masculino , Actividad Motora/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal , Carbonilación Proteica/efectos de los fármacos , Ratas Wistar , Medición de Riesgo , Aceite de Soja/administración & dosificación , Ácidos Grasos trans/administración & dosificación
12.
Hippocampus ; 25(5): 556-65, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25394793

RESUMEN

Recently, we have described the influence of dietary fatty acids (FA) on mania-like behavior of first generation animals. Here, two sequential generations of female rats were supplemented with soybean oil (SO, rich in n-6 FA, control group), fish oil (FO, rich in n-3 FA) and hydrogenated vegetable fat (HVF, rich in trans FA) from pregnancy and during lactation. In adulthood, half of each group was exposed to an amphetamine (AMPH)-induced mania animal model for behavioral, biochemical and molecular assessments. FO supplementation was associated with lower reactive species (RS) generation and protein carbonyl (PC) levels and increased dopamine transporter (DAT) levels, while HVF increased RS and PC levels, thus decreasing catalase (CAT) activity and DAT levels in hippocampus after AMPH treatment. AMPH impaired short- (1 h) and long- (24 h) term memory in the HVF group. AMPH exposure was able to reduce hippocampal BDNF- mRNA expression, which was increased in FO. While HVF was related to higher trans FA (TFA) incorporation in hippocampus, FO was associated with increased percentage of n-3 polyunsaturated FA (PUFA) together with lower n-6/n-3 PUFA ratio. Interestingly, our data showed a positive correlation between brain-derived neurotrophic factor (BDNF) mRNA and short- and long-term memory (r(2) = 0.53; P = 0.000/r(2) = 0.32; P = 0.011, respectively), as well as a negative correlation between PC and DAT levels (r(2) = 0.23; P = 0.015). Our findings confirm that provision of n-3 or TFA during development over two generations is able to change the neuronal membrane lipid composition, protecting or impairing the hippocampus, respectively, thus affecting neurothrophic factor expression such as BDNF mRNA. In this context, chronic consumption of trans fats over two generations can facilitate the development of mania-like behavior, so leading to memory impairment and emotionality, which are related to neuropsychiatric conditions.


Asunto(s)
Trastorno Bipolar/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/metabolismo , Efectos Tardíos de la Exposición Prenatal , ARN Mensajero/metabolismo , Ácidos Grasos trans/toxicidad , Animales , Trastorno Bipolar/psicología , Modelos Animales de Enfermedad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Femenino , Aceites de Pescado/toxicidad , Lactancia , Masculino , Trastornos de la Memoria/metabolismo , Embarazo , Ratas Wistar , Reconocimiento en Psicología/fisiología , Aceite de Soja/toxicidad , Productos Vegetales/toxicidad
13.
Pharmacol Biochem Behav ; 110: 58-65, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23769696

RESUMEN

The current Western diet often provides considerable amounts of saturated and trans fatty acids (TFA), whose incorporation into neuronal membranes has been implicated in changes of brain neurochemical functions. Such influence has caused concerns due to precipitation of neuropsychiatric disorders, whose data are still unclear. Here we evaluated the influence of different fats on preference parameters for amphetamine (AMPH): adolescent rats were orally supplemented with soybean oil (SO, rich in n-6 FA, which was considered an isocaloric control group), fish oil (FO, rich in n-3 FA) and hydrogenated vegetable fat (HVF, rich in saturated and trans FA) from weaning, which were born of dams supplemented with the same fat from pregnancy and lactation. AMPH preference, anxiety-like symptoms and locomotor index were evaluated in conditioned place preference (CPP), elevated plus maze (EPM) and open-field (OF), respectively, while brain oxidative status was determined in cortex, striatum and hippocampus. HVF increased AMPH-CPP and was associated with withdrawal signs, as observed by increased anxiety-like symptoms. Moreover, SO and FO were not associated with AMPH preference, but only FO-supplemented rats did not show any anxiety-like symptoms or increased locomotion. FO supplementation was related to lower oxidative damages to proteins and increased CAT activity in striatum and hippocampus, as well as increased GSH levels in blood, while HVF was related to increased oxidative status. In conclusion, our study showed the harmful influence of TFA on AMPH-CPP and drug craving symptoms, which can be related to dopaminergic neurotransmission.


Asunto(s)
Anfetamina/farmacología , Conducta Animal/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos trans/farmacología , Animales , Condicionamiento Clásico , Femenino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA