RESUMEN
Selenium is a trace element required for the active function of numerous enzymes and various physiological processes. In recent years, selenium nanoparticles draw the attention of scientists and researchers because of its multifaceted uses. The process involved in chemically synthesized SeNPs has been found to be hazardous in nature, which has paved the way for safe and ecofriendly SeNPs to be developed in order to achieve sustainability. In comparison to chemical synthesis, SeNPs can be synthesized more safely and with greater flexibility utilizing bacteria, fungi, and plants. This review focused on the synthesis of SeNPs utilizing bacteria, fungi, and plants; the mechanisms involved in SeNP synthesis; and the effect of various abiotic factors on SeNP synthesis and morphological characteristics. This article discusses the synergies of SeNP synthesis via biological routes, which can help future researchers to synthesize SeNPs with more precision and employ them in desired fields.
Asunto(s)
Nanopartículas , Selenio , Bacterias , Selenio/farmacologíaRESUMEN
OBJECTIVE: Present study was designed to explore the efficacy of vitamin C and E (VC&VE) against fluoride mediated testicular, epididymal and spermatozoal anomalies. MATERIALS AND METHODS: Thirty two adult Wistar rats were divided into four groups. Group-I was control; Group-II received sodium fluoride (NaF) at 15 mg/kg/day dose; Group-III was provided with VC (200 mg/kg/day) and VE (400 mg/kg/day) plus NaF; Group-IV received only VC&VE. Structural integrity and oxidative stress markers (superoxide dismutase, catalase, malondialdehyde and protein carbonyl) of testis and epididymis were assessed. Spermatozoal parameters (count, motility, viability and hypo-osmotic swelling) were evaluated. Testicular functional maker enzymes (acid phosphatase, alkaline phosphatase and lactate dehydrogenase) were also assessed. Integrity of testicular and spermatozoal DNA was evaluated. Testicular fluoride content was measured. RESULT: Fluoride induced structural changes and alterations of oxidative stress markers were observed in testis and epididymis. Spermatozoal potentials were altered and reduced activities of testicular functional marker enzymes were observed. Fluoride caused testicular and spermatozoal DNA damages. VC&VE supplementation resulted in protection from all fluoride mediated alterations and helped in attenuating testicular fluoride accumulation. CONCLUSION: Antioxidant properties of VC&VE ameliorated fluoride mediated reproductive damages but only supplementation did not exhibit any notable effect compared to control rats.
Asunto(s)
Ácido Ascórbico , Testículo , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacología , Daño del ADN , Suplementos Dietéticos , Fluoruros/metabolismo , Fluoruros/farmacología , Humanos , Masculino , Estrés Oxidativo , Ratas , Ratas Wistar , Fluoruro de Sodio/metabolismo , Fluoruro de Sodio/farmacología , Espermatozoides/metabolismo , Testículo/metabolismo , Vitamina E/farmacología , VitaminasRESUMEN
The intolerable levels of arsenic (As) in groundwater and its application in rice cultivation are continuously affecting the rice production in Ganga-Meghna-Brahmaputra (GMB) plain. The reduced germination and plant growth rates under excessive As stress ultimately lead to lower yield. To mitigate this concerning issue, the present study was carried out to evaluate the potential of K-humate priming on seed germination and plant growth under As stress. Seeds were primed with 100â¯mg/l K-humate for 12â¯h prior to germination. The germination percentages in unprimed seeds were 65⯱â¯5.0% and 58.3⯱â¯7.6% under stress level of 50⯵M AsV and 50⯵M AsIII, respectively. However, germination percentage in K-humate primed seeds were 75⯱â¯5.0% and 68.3⯱â¯2.9% under AsV and AsIII stress, respectively. The vigour index I (VG I) and vigour index II (VG II) recorded on 12 DAS (days after seeding) were also increased by 1.47 and 1.51 fold, respectively with K-humate supplementation under As stress. Detrimental effects of AsIII on seed germination, seedling growth and other physiological parameters were more suppressive than AsV. Application of K-humate not only improved seed germination, seedling growth and nutrient uptake but also decreased the oxidative stress markers and antioxidant activities by minimizing As uptake and translocation in the seedlings.
Asunto(s)
Arsénico/toxicidad , Oryza/fisiología , Antioxidantes/farmacología , Arsénico/farmacología , Germinación/efectos de los fármacos , Oryza/efectos de los fármacos , Potasio/farmacología , Plantones/efectos de los fármacos , Semillas/efectos de los fármacosRESUMEN
The present study aims to estimate geochemical arsenic toxicity in the domestic livestock and possible risk for human and environment caused by them. Daily dietary arsenic intake of an exposed adult cow or bull is nearly 4.56 times higher than control populace and about 3.65 times higher than exposed goats. Arsenic toxicity is well exhibited in all the biomarkers through different statistical interpretations. Arsenic bioconcentration is faster through water compared to paddy straw and mostly manifested in faeces and tail hair in cattle. Cow dung and tail hair are the most pronounced pathways of arsenic biotransformation into environment. A considerable amount of arsenic has been observed in animal proteins such as cow milk, boiled egg yolk, albumen, liver and meat from the exposed livestock. Cow milk arsenic is mostly accumulated in casein (83%) due to the presence of phosphoserine units. SAMOE-risk thermometer, calculated for the most regularly consumed foodstuffs in the area, shows the human health risk in a distinct order: drinking water > rice grain > cow milk > chicken > egg > mutton ranging from class 5 to 1. USEPA health risk assessment model reveals more risk in adults than in children, subsisting severe cancer risk from the foodstuffs where the edible animal proteins cannot be ignored. Therefore, the domestic livestock should be urgently treated with surface water, while provision of both arsenic-free drinking water and nutritional supplements is mandatory for the affected human population to overcome the severe arsenic crisis situation.