Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Plant Physiol ; 274: 153709, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35597109

RESUMEN

Pectin, cellulose, and hemicelluloses are major components of primary cell walls in plants. In addition to cell adhesion and expansion, pectin plays a central role in seed mucilage. Seed mucilage contains abundant pectic rhamnogalacturonan-I (RG-I) and lower amounts of homogalacturonan (HG), cellulose, and hemicelluloses. Previously, accumulated evidence has addressed the role of pectin RG-I in mucilage production and adherence. However, less is known about the function of pectin HG in seed coat mucilage formation. In this study, we analyzed a novel mutant, designated things fall apart2 (tfa2), which contains a mutation in HG methyltransferase QUASIMODO2 (QUA2). Etiolated tfa2 seedlings display short hypocotyls and adhesion defects similar to qua2 and tumorous shoot development2 (tsd2) alleles, and show seed mucilage defects. The diminished uronic acid content and methylesterification degree of HG in mutant seed mucilage indicate the role of HG in the formation of seed mucilage. Cellulosic rays in mutant mucilage are collapsed. The epidermal cells of seed coat in tfa2 and tsd2 display deformed columellae and reduced radial wall thickness. Under polyethylene glycol treatment, seeds from these three mutant alleles exhibit reduced germination rates. Together, these data emphasize the requirement of pectic HG biosynthesis for the synthesis of seed mucilage, and the functions of different pectin domains together with cellulose in regulating its formation, expansion, and release.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Mucílago de Planta , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Celulosa/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mutación , Pectinas/metabolismo , Semillas/genética , Semillas/metabolismo
2.
Int J Artif Organs ; 44(8): 551-559, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33339480

RESUMEN

BACKGROUND: Regional citrate anticoagulation (RCA) for renal replacement therapy is widely practiced in critically ill patients. However, concern exists regarding its labor-intensiveness for monitoring and the associated hypocalcemia. In this study, we provided an algorithm for prescribing RCA and evaluated its safety in patients. METHODS: During 18 hemofiltration treatments with calcium-free replacement solution, participants were randomized to receive algorithm-based or trial-and-error RCA protocol. The effluent volume, post-filter and in vivo ionized calcium (iCa), and calcium in the sera and effluents were periodically measured at an interval of 1 to 2 h. RESULTS: For patients received algorithm-based RCA protocol, no one had a serum iCa less than 0.9 mmol/L, and none needed calcium supplement adjustment to maintain serum calcium stability. For patients accepted trial-and-error protocol, all patients had a serum iCa below 0.9 mmol/L, their serum iCa and calcium levels fluctuated dramatically, and all patients need additional calcium supplement adjustment during RCA. None of the participants showed a post-filter iCa > 0.4 mmol/L. CONCLUSION: We provided a safe algorithm for calculating calcium supplementation doses that could maintain serum calcium stability without additional adjustment during RCA.


Asunto(s)
Calcio , Ácido Cítrico , Algoritmos , Anticoagulantes , Citratos , Humanos
3.
Plant Cell ; 32(11): 3576-3597, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32883711

RESUMEN

Pectins are abundant in the cell walls of dicotyledonous plants, but how they interact with other wall polymers and influence wall integrity and cell growth has remained mysterious. Here, we verified that QUASIMODO2 (QUA2) is a pectin methyltransferase and determined that QUA2 is required for normal pectin biosynthesis. To gain further insight into how pectin affects wall assembly and integrity maintenance, we investigated cellulose biosynthesis, cellulose organization, cortical microtubules, and wall integrity signaling in two mutant alleles of Arabidopsis (Arabidopsis thaliana) QUA2, qua2 and tsd2 In both mutants, crystalline cellulose content is reduced, cellulose synthase particles move more slowly, and cellulose organization is aberrant. NMR analysis shows higher mobility of cellulose and matrix polysaccharides in the mutants. Microtubules in mutant hypocotyls have aberrant organization and depolymerize more readily upon treatment with oryzalin or external force. The expression of genes related to wall integrity, wall biosynthesis, and microtubule stability is dysregulated in both mutants. These data provide insights into how homogalacturonan is methylesterified upon its synthesis, the mechanisms by which pectin functionally interacts with cellulose, and how these interactions are translated into intracellular regulation to maintain the structural integrity of the cell wall during plant growth and development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Celulosa/biosíntesis , Metiltransferasas/metabolismo , Mutación , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Adhesión Celular/genética , Pared Celular/genética , Celulosa/genética , Dinitrobencenos/farmacología , Regulación de la Expresión Génica de las Plantas , Hipocótilo/citología , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Metiltransferasas/genética , Microtúbulos/metabolismo , Pectinas/biosíntesis , Pectinas/genética , Pectinas/metabolismo , Células Vegetales/efectos de los fármacos , Células Vegetales/metabolismo , Plantas Modificadas Genéticamente , Sulfanilamidas/farmacología , Ácidos Urónicos/metabolismo
4.
Biochem Biophys Res Commun ; 523(2): 416-422, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31870548

RESUMEN

Poplar is a superior forestation species with high adaptability. The woody tissue of poplar is mainly derived from cell wall. Cell wall formation determines cell shape and woody growth. Pectin is rich in primary cell wall, but it is also involved in the regulation of wood formation. In our study, we cloned a gene from poplar (Populus tomentos), designed as PtoPME35, which encodes a putative pectin methylesterase. PtoPME35 has higher sequence similarity with Arabidopsis AtPME35. Gene expression analysis shows that PtoPME35 has a constitutive expression pattern in multiple tissues, with the highest expression in stem. Subcellular localization result indicates that PtoPME35 is localized to the cell wall. To elucidate the biological function of PtoPME35 in vivo, we generated overexpression plants in poplar and Arabidopsis. The degree of pectin methylesterification is decreased in PtoPME35-overexpressing transgenic poplar, although no obvious phenotypes were displayed. In PtoPME35-overexpressing Arabidopsis plants, stomatal opening is inhibited and water loss rate is decreased under the drought condition. Moreover, the expression levels of drought-stress responsive genes were higher with mannitol treatment in PtoPME35-overexpressing Arabidopsis plants than in wild type controls. Accordingly, these results suggest that PtoPME35 may regulate osmotic stress responses by modulating stomatal functions.


Asunto(s)
Arabidopsis/fisiología , Hidrolasas de Éster Carboxílico/genética , Estomas de Plantas/fisiología , Populus/genética , Arabidopsis/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Ósmosis/fisiología , Pectinas/genética , Pectinas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Estomas de Plantas/genética , Plantas Modificadas Genéticamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA