Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Neuron ; 78(6): 1063-74, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23727119

RESUMEN

Benzodiazepines (BZs) allosterically modulate γ-aminobutyric acid type-A receptors (GABAARs) to increase inhibitory synaptic strength. Diazepam binding inhibitor (DBI) protein is a BZ site ligand expressed endogenously in the brain, but functional evidence for BZ-mimicking positive modulatory actions has been elusive. We demonstrate an endogenous potentiation of GABAergic synaptic transmission and responses to GABA uncaging in the thalamic reticular nucleus (nRT) that is absent in both nm1054 mice, in which the Dbi gene is deleted, and mice in which BZ binding to α3 subunit-containing GABAARs is disrupted. Viral transduction of DBI into nRT is sufficient to rescue the endogenous potentiation of GABAergic transmission in nm1054 mice. Both mutations enhance thalamocortical spike-and-wave discharges characteristic of absence epilepsy. Together, these results indicate that DBI mediates endogenous nucleus-specific BZ-mimicking ("endozepine") roles to modulate nRT function and suppress thalamocortical oscillations. Enhanced DBI signaling might serve as a therapy for epilepsy and other neurological disorders.


Asunto(s)
Inhibidor de la Unión a Diazepam/fisiología , Potenciales Postsinápticos Inhibidores/genética , Receptores de GABA-A/metabolismo , Tálamo/fisiología , Regulación Alostérica/genética , Sustitución de Aminoácidos/genética , Animales , Benzodiazepinas/metabolismo , Inhibidor de la Unión a Diazepam/deficiencia , Inhibidor de la Unión a Diazepam/genética , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mutación/genética , Inhibición Neural/genética , Receptores de GABA-A/genética , Receptores de GABA-A/fisiología , Ácido gamma-Aminobutírico/metabolismo
2.
Proc Natl Acad Sci U S A ; 106(18): 7630-5, 2009 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-19380748

RESUMEN

Neural inhibition within the thalamus is integral in shaping thalamocortical oscillatory activity. Fast, synaptic inhibition is primarily mediated by activation of heteropentameric GABA(A) receptor complexes. Here, we examined the synaptic physiology and network properties of mice lacking GABA(A) receptor alpha3, a subunit that in thalamus is uniquely expressed by inhibitory neurons of the reticular nucleus (nRT). Deletion of this subunit produced a powerful compensatory gain in inhibitory postsynaptic response in nRT neurons. Although, other forms of inhibitory and excitatory synaptic transmission in the circuit were unchanged, evoked thalamic oscillations were strongly dampened in alpha3 knockout mice. Furthermore, pharmacologically induced thalamocortical absence seizures displayed a reduction in length and power in alpha3 knockout mice. These studies highlight the role of GABAergic inhibitory strength within nRT in the maintenance of thalamic oscillations, and demonstrate that inhibitory intra-nRT synapses are a critical control point for regulating higher order thalamocortical network activity.


Asunto(s)
Epilepsia Tipo Ausencia/fisiopatología , Receptores de GABA-A/fisiología , Sinapsis/fisiología , Tálamo/fisiología , Animales , Potenciales Evocados/genética , Eliminación de Gen , Núcleos Talámicos Intralaminares/fisiología , Ratones , Ratones Noqueados , Receptores de GABA-A/genética , Transmisión Sináptica
3.
J Neurosci ; 29(7): 2177-87, 2009 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-19228970

RESUMEN

The GABA(A) receptor has been identified as the single most important target for the intravenous anesthetic propofol. How effects at this receptor are then translated into a loss of consciousness, however, remains a mystery. One possibility is that anesthetics act on natural sleep pathways. Here, we test this hypothesis by exploring the anesthetic sensitivities of GABAergic synaptic currents in three specific brain nuclei that are known to be involved in sleep. Using whole-cell electrophysiology, we have recorded GABAergic IPSCs from the tuberomammillary nucleus (TMN), the perifornical area (Pef), and the locus ceruleus (LC) in brain slices from both wild-type mice and mice that carry a specific mutation in the GABA(A) receptor beta(3) subunit (N265M), which greatly reduces their sensitivity to propofol, but not to the neurosteroid alphaxalone. We find that this in vivo pattern of anesthetic sensitivity is mirrored in the hypothalamic TMN and Pef nuclei, consistent with their role as direct anesthetic targets. In contrast, anesthetic sensitivity in the LC was unaffected by the beta(3)N265M mutation, ruling out this nucleus as a major target for propofol. In support of the hypothesis that orexinergic neurons in the Pef are involved in propofol anesthesia, we further show that these neurons are selectively inhibited by GABAergic drugs in vivo during anesthesia, and that a modulation in the activity of Pef neurons alone can affect loss of righting reflex. Overall, our results support the idea that GABAergic anesthetics such as propofol exert their effects, at least in part, by modulating hypothalamic sleep pathways.


Asunto(s)
Anestésicos Generales/farmacología , Hipotálamo/efectos de los fármacos , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/genética , Sueño/efectos de los fármacos , Animales , Técnicas de Sustitución del Gen , Área Hipotalámica Lateral/efectos de los fármacos , Área Hipotalámica Lateral/metabolismo , Hipotálamo/metabolismo , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Locus Coeruleus/efectos de los fármacos , Locus Coeruleus/metabolismo , Masculino , Ratones , Ratones Mutantes , Ratones Transgénicos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Neuropéptidos/metabolismo , Orexinas , Técnicas de Cultivo de Órganos , Propofol/farmacología , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley , Sueño/fisiología , Ácido gamma-Aminobutírico/metabolismo
4.
Neuropharmacology ; 56(1): 174-81, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18602406

RESUMEN

Valerian extracts have been used for centuries to alleviate restlessness and anxiety albeit with unknown mechanism of action in vivo. We now describe a specific binding site on GABA(A) receptors with nM affinity for valerenic acid and valerenol, common constituents of valerian. Both agents enhanced the response to GABA at multiple types of recombinant GABA(A) receptors. A point mutation in the beta2 or beta3 subunit (N265M) of recombinant receptors strongly reduced the drug response. In vivo, valerenic acid and valerenol exerted anxiolytic activity with high potencies in the elevated plus maze and the light/dark choice test in wild type mice. In beta3 (N265M) point-mutated mice the anxiolytic activity of valerenic acid was absent. Thus, neurons expressing beta3 containing GABA(A) receptors are a major cellular substrate for the anxiolytic action of valerian extracts.


Asunto(s)
Ansiolíticos/farmacología , Indenos/farmacología , Receptores de GABA-A/efectos de los fármacos , Sesquiterpenos/farmacología , Sitio Alostérico/efectos de los fármacos , Análisis de Varianza , Animales , Ansiolíticos/química , Encéfalo/efectos de los fármacos , Línea Celular Transformada , Conducta de Elección/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Indenos/química , Aprendizaje por Laberinto/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Mutantes , Mutagénesis Sitio-Dirigida/métodos , Mutación , Técnicas de Placa-Clamp , Extractos Vegetales/química , Extractos Vegetales/farmacología , Unión Proteica/efectos de los fármacos , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ratas , Receptores de GABA-A/genética , Sesquiterpenos/química , Tritio/farmacología , Ácido gamma-Aminobutírico/farmacología
5.
J Neurosci ; 26(16): 4247-55, 2006 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-16624945

RESUMEN

Rhythmic inhibition entrains the firing of excitatory neurons during oscillations throughout the brain. Previous work has suggested that the strength and duration of inhibitory input determines the synchrony and period, respectively, of these oscillations. In particular, sleep spindles result from a cycle of events including rhythmic inhibition and rebound bursts in thalamocortical (TC) neurons, and slowing and strengthening this inhibitory input may transform spindles into spike-wave discharges characteristic of absence epilepsy. Here, we used dynamic clamp to inject TC neurons with spindle-like trains of IPSCs and studied how modest changes in the amplitude and/or duration of these IPSCs affected the responses of the TC neurons. Contrary to our expectations, we found that prolonging IPSCs accelerates postinhibitory rebound (PIR) in TC neurons, and that increasing either the amplitude or duration of IPSCs desynchronizes PIR activity in a population of TC cells. Tonic injection of hyperpolarizing or depolarizing current dramatically alters the timing and synchrony of PIR. These results demonstrate that rhythmic PIR activity is an emergent property of interactions between intrinsic and synaptic currents, not just a passive reflection of incoming synaptic inhibition.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Cerebral/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Tálamo/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Corteza Cerebral/efectos de los fármacos , Agonistas de Receptores de GABA-A , Técnicas In Vitro , Ratones , Ratones Mutantes , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Neuronas/efectos de los fármacos , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/fisiología , Sinapsis/efectos de los fármacos , Tálamo/efectos de los fármacos , Zolpidem
6.
J Neurosci ; 23(9): 3649-57, 2003 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-12736336

RESUMEN

Networks of interconnected inhibitory neurons, such as the thalamic reticular nucleus (TRN), often regulate neural oscillations. Thalamic circuits generate sleep spindles and may contribute to some forms of generalized absence epilepsy, yet the exact role of inhibitory connections within the TRN remains controversial. Here, by using mutant mice in which the thalamic effects of the anti-absence drug clonazepam (CZP) are restricted to either relay or reticular nuclei, we show that the enhancement of intra-TRN inhibition is both necessary and sufficient for CZP to suppress evoked oscillations in thalamic slices. Extracellular and intracellular recordings show that CZP specifically suppresses spikes that occur during bursts of synchronous firing, and this suppression grows over the course of an oscillation, ultimately shortening that oscillation. These results not only identify a particular anatomical and molecular target for anti-absence drug design, but also elucidate a specific dynamic mechanism by which inhibitory networks control neural oscillations.


Asunto(s)
Relojes Biológicos/fisiología , Neuronas/fisiología , Receptores de GABA-A/metabolismo , Tálamo/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Relojes Biológicos/efectos de los fármacos , Clonazepam/farmacología , Estimulación Eléctrica , Moduladores del GABA/farmacología , Técnicas In Vitro , Ratones , Ratones Mutantes , Red Nerviosa/fisiología , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Subunidades de Proteína/efectos de los fármacos , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/genética , Núcleos Talámicos/efectos de los fármacos , Núcleos Talámicos/fisiología , Tálamo/citología , Tálamo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA