RESUMEN
Cannabidiol (CBD) is the non-psychoactive component of the plant Cannabis sativa (L.) that has great anti-inflammatory benefits and wound healing effects. However, its high lipophilicity, chemical instability, and extensive metabolism impair its bioavailability and clinical use. Here, we report on the preparation of a human cornea substitute in vitro and validate this substitute for the evaluation of drug penetration. CBD nanoemulsion was developed and evaluated for stability and biological activity. The physicochemical properties of CBD nanoemulsion were maintained during storage for 90 days under room conditions. In the scratch assay, nanoformulation showed significantly ameliorated wound closure rates compared to the control and pure CBD. Due to the lower cytotoxicity of nanoformulated CBD, a higher anti-inflammatory activity was demonstrated. Neither nanoemulsion nor pure CBD can penetrate the cornea after the four-hour apical treatment. For nanoemulsion, 94 % of the initial amount of CBD remained in the apical compartment while only 54 % of the original amount of pure CBD was detected in the apical medium, and 7 % in the cornea, the rest was most likely metabolized. In summary, the nanoemulsion developed in this study enhanced the stability and biological activity of CBD.
Asunto(s)
Cannabidiol , Humanos , Cannabidiol/química , Disponibilidad Biológica , Cicatrización de Heridas , Antiinflamatorios/farmacología , CórneaRESUMEN
Postbiotics are health-promoting microbial metabolites delivered as a functional food or a food supplement. They either directly influence signaling pathways of the body or indirectly manipulate metabolism and the composition of intestinal microflora. Cancer is the second leading cause of death worldwide and even though the prognosis of patients is improving, it is still poor in the substantial part of the cases. The preventable nature of cancer and the importance of a complex multi-level approach in anticancer therapy motivate the search for novel avenues of establishing the anticancer environment in the human body. This review summarizes the principal findings demonstrating the usefulness of both natural and synthetic sources of postbotics in the prevention and therapy of cancer. Specifically, the effects of crude cell-free supernatants, the short-chain fatty acid butyrate, lactic acid, hydrogen sulfide, and ß-glucans are described. Contradictory roles of postbiotics in healthy and tumor tissues are highlighted. In conclusion, the application of postbiotics is an efficient complementary strategy to combat cancer.
Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Neoplasias/dietoterapia , Probióticos/farmacología , Butiratos/farmacología , Suplementos Dietéticos/microbiología , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/farmacología , Humanos , Sulfuro de Hidrógeno/farmacología , Ácido Láctico/farmacología , Metaboloma , Neoplasias/metabolismo , Prebióticos/microbiología , Probióticos/metabolismo , beta-Glucanos/farmacologíaRESUMEN
Prostate cancer is a very common disease, which is, unfortunately, often the cause of many male deaths. This is underlined by the fact that the early stages of prostate cancer are often asymptomatic. Therefore, the disease is usually detected and diagnosed at late advanced or even metastasized stages, which are already difficult to treat. Hence, it is important to pursue research and development not only in terms of novel diagnostic methods but also of therapeutic ones, as well as to increase the effectiveness of the treatment by combinational medicinal approach. Therefore, in this review article, we focus on recent approaches and novel potential tools for the treatment of advanced prostate cancer; these include not only androgen deprivation therapy, antiandrogen therapy, photodynamic therapy, photothermal therapy, immunotherapy, multimodal therapy, but also poly(ADP-ribose) polymerase, Akt and cyclin-dependent kinase inhibitors.
Asunto(s)
Neoplasias de la Próstata/terapia , Animales , Antineoplásicos Hormonales/química , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Ensayos Clínicos como Asunto , Terapia Combinada , Humanos , Inmunoterapia , Masculino , Fototerapia , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/inmunologíaRESUMEN
Arrayan and peumo fruits are commonly used in the traditional medicine of Chile. In this study, the concentration of the extracts halving the bacterial viability and biofilms formation and disruption of the drug-sensitive and drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa was determined. The chemical composition of extracts was analyzed by high-resolution liquid chromatography coupled with mass spectrometry (U-HPLC/MS). The arrayan extract (Inhibitory concentration IC50 0.35 ± 0.01 mg/mL) was more effective than peumo extract (IC50 0.53 ± 0.02 mg/mL) in the inhibition of S. aureus planktonic cells. Similarly, the arrayan extract was more effective in inhibiting the adhesion (S. aureus IC50 0.23 ± 0.02 mg/mL, P. aeruginosa IC50 0.29 ± 0.02 mg/mL) than peumo extracts (S. aureus IC50 0.47 ± 0.03 mg/mL, P. aeruginosa IC50 0.35 ± 0.01 mg/mL). Both extracts inhibited quorum sensing in a concentration-dependent manner, and the most significant was the autoinducer-2 type communication inhibition by arrayan extract. Both extracts also disrupted preformed biofilm of P. aeruginosa (arrayan IC50 0.56 ± 0.04 mg/mL, peumo IC50 0.59 ± 0.04 mg/mL). However, neither arrayan nor peumo extracts disrupted S. aureus mature biofilm. U-HPLC/MS showed that both fruit extracts mainly possessed quercetin compounds; the peumo fruit extract also contained phenolic acids and phenylpropanoids. Our results suggested that both extracts could be used as natural antimicrobials for some skin and nosocomial infections.
RESUMEN
The inhibition and eradication of oral biofilms is increasingly focused on the use of plant extracts as mouthwashes and toothpastes adjuvants. Here, we report on the chemical composition and the antibiofilm activity of 15 methanolic extracts of Iris species against both mono-(Pseudomonas aeruginosa, Staphylococcus aureus) and multi-species oral biofilms (Streptococcus gordonii, Veillonella parvula, Fusobacterium nucleatum subsp. nucleatum, and Actinomyces naeslundii). The phytochemical profiles of Iris pallida s.l., Iris versicolor L., Iris lactea Pall., Iris carthaliniae Fomin, and Iris germanica were determined by ultra-high performance liquid chromatography-high-resolution tandem mass spectroscopy (UHPLC-HRMS/MS) analysis, and a total of 180 compounds were identified among Iris species with (iso)flavonoid dominancy. I. pallida, I. versicolor, and I. germanica inhibited both the quorum sensing and adhesion during biofilm formation in a concentration-dependent manner. However, the extracts were less active against maturated biofilms. Of the five tested species, Iris pallida s.l. was the most effective at both inhibiting biofilm formation and disrupting existing biofilms, and the leaf extract exhibited the strongest inhibitory effect compared to the root and rhizome extracts. The cytotoxicity of the extracts was excluded in human fibroblasts. The inhibition of bacterial adhesion significantly correlated with myristic acid content, and quorum sensing inhibition correlated with the 7-ß-hydroxystigmast-4-en-3-one content. These findings could be useful for establishing an effective tool for the control of oral biofilms and thus dental diseases.
RESUMEN
Knotweed is a flowering plant that is native to temperate and subtropical regions in the northern hemisphere. We evaluated Japanese (Reynoutria japonica Houtt.) and Bohemian (Fallopia x bohemica) knotweed rhizome and flower ethanol extracts and compared them in terms of their biological activities. The specific polyphenols were identified and quantified using HPLC/DAD, and the antioxidant activity was determined using 2,2-diphenly-1-picrylhydrazyl (DPPH) and cellular antioxidant capacity assays. The anticancer activity was evaluated as the difference between the cytotoxicity to cancer cells compared with control cells. The antimicrobial activity was determined using bacteria and yeast. The antidiabetic activity was tested as the ability of the extracts to inhibit α-amylase. Both rhizome extracts were sources of polyphenols, particularly polydatin and (-)-epicatechin; however, the cellular assay showed the highest antioxidant capacity in the flower extract of F. bohemica. The PaTu cell line was the least sensitive toward all knotweed extracts. The flower extracts of both species were less toxic than the rhizomes. However, the activity of the tested extracts was not specific for cancer cells, indicating a rather toxic mode of action. Furthermore, all used extracts decreased the α-amylase activity, and the rhizome extracts were more effective than the flower extracts. None of the extracts inhibited bacterial growth; however, they inhibited yeast growth. The results confirmed that rhizomes of Reynoutria japonica Houtt. could become a new source of bioactive compounds, which could be used for the co-treatment of diabetes and as antifungal agents.
RESUMEN
Mycotoxins found in randomly selected commercial milk thistle dietary supplement were evaluated for their toxicity in silico and in vitro. Using in silico methods, the basic physicochemical, pharmacological, and toxicological properties of the mycotoxins were predicted using ACD/Percepta. The in vitro cytotoxicity of individual mycotoxins was determined in mouse macrophage (RAW 264.7), human hepatoblastoma (HepG2), and human embryonic kidney (HEK 293T) cells. In addition, we studied the bioavailability potential of mycotoxins and silibinin utilizing an in vitro transwell system with differentiated human colon adenocarcinoma cells (Caco-2) simulating mycotoxin transfer through the intestinal epithelial barrier. The IC50 values for individual mycotoxins in studied cells were in the biologically relevant ranges as follows: 3.57-13.37 nM (T-2 toxin), 5.07-47.44 nM (HT-2 toxin), 3.66-17.74 nM (diacetoxyscirpenol). Furthermore, no acute toxicity was obtained for deoxynivalenol, beauvericin, zearalenone, enniatinENN-A, enniatin-A1, enniatin-B, enniatin-B1, alternariol, alternariol-9-methyl ether, tentoxin, and mycophenolic acid up to the 50 nM concentration. The acute toxicity of these mycotoxins in binary combinations exhibited antagonistic effects in the combinations of T-2 with DON, ENN-A1, or ENN-B, while the rest showed synergistic or additive effects. Silibinin had a significant protective effect against both the cytotoxicity of three mycotoxins (T-2 toxin, HT-2 toxin, DAS) and genotoxicity of AME, AOH, DON, and ENNs on HEK 293T. The bioavailability results confirmed that AME, DAS, ENN-B, TEN, T-2, and silibinin are transported through the epithelial cell layer and further metabolized. The bioavailability of silibinin is very similar to mycotoxins poor penetration.
Asunto(s)
Micotoxinas/toxicidad , Sustancias Protectoras/farmacología , Silibina/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Ensayo Cometa , Simulación por Computador , Suplementos Dietéticos , Interacciones Farmacológicas , Humanos , Ratones , Silybum marianum/químicaRESUMEN
Herbal-based dietary supplements have become increasingly popular. The extract from milk thistle (Silybum marianum), is often used for the treatment of liver diseases. However, serious concerns exist regarding the efficacy, composition, as well as the safety of these over-the-counter preparations. Therefore, the aim of the present study was to investigate the composition as well as chemical and biological safety of 26 milk thistle-based dietary supplements purchased from both the U.S. and Czech markets between 2016 and 2017. The study was focused on a determination of the composition of active ingredients, as well as analyses of possible contaminants including: mycotoxins, plant alkaloids, and pesticide residues, as well as the microbial purity. High-throughput analyses were performed using advanced U-HPLC-HRMS techniques. Large differences in the silymarin content were observed among individual milk thistle preparations, often in contrast with the information provided by the manufacturers. In addition, substantial inter-batch differences in silymarin content were also demonstrated. In all milk thistle preparations tested, large numbers and high concentrations of mycotoxins and several pesticides, as well as the substantial presence of microbiological contamination were detected, pointing to serious safety issues. In conclusion, our results strongly indicate the need for strict controls of the composition, chemical contaminants, as well as the microbiological purity of commercial milk thistle extracts used for the treatment of liver diseases. Poor definition of these preparations together with contamination by biologically active substances may not only account for the inconsistency of clinical observations, but also be responsible for possible herbal-based dietary supplements-induced liver injury.
Asunto(s)
Productos Biológicos/química , Suplementos Dietéticos/microbiología , Extractos Vegetales/química , Silybum marianum/química , Silybum marianum/microbiología , Antioxidantes/química , Antioxidantes/fisiología , Productos Biológicos/farmacología , Humanos , Hepatopatías/tratamiento farmacológico , Micotoxinas/química , Plaguicidas/química , Fitoterapia/métodos , Extractos Vegetales/farmacología , Silimarina/química , Silimarina/farmacologíaRESUMEN
Numerous in vitro assays are used to characterize the antioxidant properties of natural-based matrices. However, many of them generate contradictory and non-compliant results. In our study, we focused on the characterization of traditionally used biochemical (2,2'-azino-bis-(3-ethylbenzothiazoline-6 sulfonic acid) (ABTS), Oxygen Radical Absorption Capacity (ORAC), and 2,2-diphenyl-1-picrylhydrazyl (DPPH)) and cellular (CAA) antioxidant tests on a broad set of milk thistle dietary supplements containing silymarin. In addition to 26 commercially available preparations, also the natural silymarin extract available from Sigma Aldrich, St. Louis, MI, USA, and a model mixture of pure flavonoid/flavonolignans mimicking the silymarin composition were investigated as control samples. Significant differences in the antioxidant capacity of the supplements were observed. Unlike the DPPH, the results of the ABTS and ORAC methods correlated with the silymarin components determined by U-HPLC-HRMS/MS. The responses in CAA were considerably lower than in other assays. Silymarin exhibited a significantly higher antioxidant capacity than the artificially prepared flavonoid/flavonolignans mixture in all tests, indicating possible presence of other antioxidants of natural origin. The follow-up U-HPLC-HRMS/MS screening revealed the presence of tens of non-silymarin compounds with reported antioxidant activity (not only in the silymarin extract, but also in the milk thistle preparations). The sum of the total phenolics and the sum of the simple phenolics correlated with CAA results more than silymarin.
RESUMEN
Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting tens of million people. Currently marketed drugs have limited therapeutic efficacy and only slowing down the neurodegenerative process. Interestingly, it has been suggested that biometal cations in the amyloid beta (Aß) aggregate deposits contribute to neurotoxicity and degenerative changes in AD. Thus, chelation therapy could represent novel mode of therapeutic intervention. Here we describe the features of chelators with therapeutically relevant mechanism of action. We have found that the tested compounds effectively reduce the toxicity of exogenous Aß and suppress its endogenous production as well as decrease oxidative stress. Cholyl hydrazones were found to be the most active compounds. In summary, our data show that cation complexation, together with improving transport efficacy may represent basis for eventual treatment strategy in AD.
Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Quelantes/farmacología , Terapia por Quelación , Inhibidores de la Colinesterasa/farmacología , Metales/farmacología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Cationes/química , Cationes/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Quelantes/síntesis química , Quelantes/química , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Humanos , Metales/química , Estructura Molecular , Agregado de Proteínas/efectos de los fármacos , Relación Estructura-Actividad , Células Tumorales CultivadasRESUMEN
Despite successful vaccination programs and effective treatments for some viral infections, humans are still losing the battle with viruses. Persisting human pandemics, emerging and re-emerging viruses, and evolution of drug-resistant strains impose continuous search for new antiviral drugs. A combination of detailed information about the molecular organization of viruses and progress in molecular biology and computer technologies has enabled rational antivirals design. Initial step in establishing efficacy of new antivirals is based on simple methods assessing inhibition of the intended target. We provide here an overview of biochemical and cell-based assays evaluating the activity of inhibitors of clinically important viruses.
Asunto(s)
Antivirales/farmacología , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/farmacología , Fenómenos Fisiológicos de los Virus/efectos de los fármacos , Animales , Cápside/efectos de los fármacos , Cápside/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacosRESUMEN
Due to the high number of drug-resistant HIV-1 mutants generated by highly active antiretroviral therapy (HAART), there is continuing demand for new types of inhibitors. Both the assembly of the Gag polyprotein into immature and mature HIV-1 particles are attractive candidates for the blocking of the retroviral life cycle. Currently, no therapeutically-used assembly inhibitor is available. One possible explanation is the lack of a reliable and simple assembly inhibitor screening method. To identify compounds potentially inhibiting the formation of both types of HIV-1 particles, we developed a new fluorescent high-throughput screening assay. This assay is based on the quantification of the assembly efficiency in vitro in a 96-well plate format. The key components of the assay are HIV-1 Gag-derived proteins and a dual-labelled oligonucleotide, which emits fluorescence only when the assembly of retroviral particles is inhibited. The method was validated using three (CAI, BM2, PF74) reported assembly inhibitors.
Asunto(s)
Fármacos Anti-VIH/farmacología , Evaluación Preclínica de Medicamentos/métodos , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Ensamble de Virus/efectos de los fármacos , Productos del Gen gag/metabolismo , Infecciones por VIH/tratamiento farmacológico , VIH-1/fisiología , HumanosRESUMEN
Spirulina platensis is a blue-green alga used as a dietary supplement because of its hypocholesterolemic properties. Among other bioactive substances, it is also rich in tetrapyrrolic compounds closely related to bilirubin molecule, a potent antioxidant and anti-proliferative agent. The aim of our study was to evaluate possible anticancer effects of S. platensis and S. platensis-derived tetrapyrroles using an experimental model of pancreatic cancer. The anti-proliferative effects of S. platensis and its tetrapyrrolic components [phycocyanobilin (PCB) and chlorophyllin, a surrogate molecule for chlorophyll A] were tested on several human pancreatic cancer cell lines and xenotransplanted nude mice. The effects of experimental therapeutics on mitochondrial reactive oxygen species (ROS) production and glutathione redox status were also evaluated. Compared to untreated cells, experimental therapeutics significantly decreased proliferation of human pancreatic cancer cell lines in vitro in a dose-dependent manner (from 0.16 gâ¢L-1 [S. platensis], 60 µM [PCB], and 125 µM [chlorophyllin], p<0.05). The anti-proliferative effects of S. platensis were also shown in vivo, where inhibition of pancreatic cancer growth was evidenced since the third day of treatment (p < 0.05). All tested compounds decreased generation of mitochondrial ROS and glutathione redox status (p = 0.0006; 0.016; and 0.006 for S. platensis, PCB, and chlorophyllin, respectively). In conclusion, S. platensis and its tetrapyrrolic components substantially decreased the proliferation of experimental pancreatic cancer. These data support a chemopreventive role of this edible alga. Furthermore, it seems that dietary supplementation with this alga might enhance systemic pool of tetrapyrroles, known to be higher in subjects with Gilbert syndrome.
Asunto(s)
Antineoplásicos/farmacología , Bilirrubina/farmacología , Proliferación Celular/efectos de los fármacos , Neoplasias Pancreáticas/patología , Extractos Vegetales/farmacología , Spirulina , Tetrapirroles/farmacología , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Glutatión/metabolismo , Humanos , Técnicas In Vitro , Ratones , Ratones Desnudos , Oxidación-Reducción , Neoplasias Pancreáticas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Trasplante Heterólogo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
We have developed a sensitive luminometric assay for determining the activity of retroviral proteases that uses proteolytic cleavage of polypeptide substrate immobilized on Ni-NTA HisSorb Strips microplates. The protease substrate derived from the Gag precursor protein of Mason-Pfizer monkey virus (M-PMV) was conjugated with horseradish peroxidase (HRP), which catalyzes oxidation of luminol in the assay. The cleavage of the substrate was monitored as a decrease in luminescent signal caused by the release of the cleavage product conjugated to HRP. Testing of a set of M-PMV protease inhibitors confirmed that this method is sufficiently sensitive and specific for high-throughput screening of retroviral protease inhibitors.