Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PeerJ ; 11: e15452, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37334137

RESUMEN

Background: Pollinating insects provide economically and ecologically valuable services, but are threatened by a variety of anthropogenic changes. The availability and quality of floral resources may be affected by anthropogenic land use. For example, flower-visiting insects in agroecosystems rely on weeds on field edges for foraging resources, but these weeds are often exposed to agrochemicals that may compromise the quality of their floral resources. Methods: We conducted complementary field and greenhouse experiments to evaluate the: (1) effect of low concentrations of agrochemical exposure on nectar and pollen quality and (2) relationship between floral resource quality and insect visitation. We applied the same agrochemcial treatments (low concentrations of fertilizer, low concentrations of herbicide, a combination of both, and a control of just water) to seven plant species in the field and greenhouse. We collected data on floral visitation by insects in the field experiment for two field seasons and collected pollen and nectar from focal plants in the greenhouse to avoid interfering with insect visitation in the field. Results: We found pollen amino acid concentrations were lower in plants exposed to low concentrations of herbicide, and pollen fatty acid concentrations were lower in plants exposed to low concentrations of fertilizer, while nectar amino acids were higher in plants exposed to low concentrations of either fertilizer or herbicide. Exposure to low fertilizer concentrations also increased the quantity of pollen and nectar produced per flower. The responses of plants exposed to the experimental treatments in the greenhouse helped explain insect visitation in the field study. The insect visitation rate correlated with nectar amino acids, pollen amino acids, and pollen fatty acids. An interaction between pollen protein and floral display suggested pollen amino acid concentrations drove insect preference among plant species when floral display sizes were large. We show that floral resource quality is sensitive to agrochemical exposure and that flower-visiting insects are sensitive to variation in floral resource quality.


Asunto(s)
Herbicidas , Néctar de las Plantas , Animales , Fertilizantes , Polinización/fisiología , Polen , Insectos/fisiología , Malezas , Agroquímicos , Aminoácidos
2.
Oecologia ; 190(4): 901-912, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31280369

RESUMEN

Non-native plant species reliant on insect pollination must attract novel pollinators in their introduced habitat to reproduce. Indeed, pollination services provided by resident floral visitors may contribute to the spread of non-native species, which may then affect the pollination services received by native plants. To determine the mechanisms by which an invasive thistle attracts pollinators in its introduced range, and whether its presence changes the pollinator visitation to native plant species, we compared bee visitation to native plants in the presence or absence of the invader. We experimentally tested the effect of a thistle invasion into a native plant community. We found that the non-native thistle was the most attractive of the plant species to visiting bee species. However, there was no effect of experimental treatment (presence of thistle) on bee abundance or visitation rate (bees per unit floral area per sample) to native plant species. Across 68 bee and 6 plant species, we found a significant correlation between pollen protein content and bee abundance and visitation rate. Thistle pollen also had a similar protein:lipid ratio to legumes, which correlated with bumble bee visitation. The high protein content of the thistle pollen, as compared to four native asters, may allow it to attract pollinators in novel ecosystems, and potentially contribute to its success as an invader. At the same time, this high protein pollen may act as a novel resource to pollinators in the thistle's invaded range.


Asunto(s)
Ecosistema , Flores , Animales , Abejas , Plantas , Polen , Polinización
3.
Plant Cell ; 21(2): 460-78, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19252082

RESUMEN

The 26S proteasome is an essential multicatalytic protease complex that degrades a wide range of intracellular proteins, especially those modified with ubiquitin. Arabidopsis thaliana and other plants use pairs of genes to encode most of the core subunits, with both of the isoforms often incorporated into the mature complex. Here, we show that the gene pair encoding the regulatory particle non-ATPase subunit (RPN5) has a unique role in proteasome function and Arabidopsis development. Homozygous rpn5a rpn5b mutants could not be generated due to a defect in male gametogenesis. While single rpn5b mutants appear wild-type, single rpn5a mutants display a host of morphogenic defects, including abnormal embryogenesis, partially deetiolated development in the dark, a severely dwarfed phenotype when grown in the light, and infertility. Proteasome complexes missing RPN5a are less stable in vitro, suggesting that some of the rpn5a defects are caused by altered complex integrity. The rpn5a phenotype could be rescued by expression of either RPN5a or RPN5b, indicating functional redundancy. However, abnormal phenotypes generated by overexpression implied that paralog-specific functions also exist. Collectively, the data point to a specific role for RPN5 in the plant 26S proteasome and suggest that its two paralogous genes in Arabidopsis have both redundant and unique roles in development.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Proteínas Portadoras/genética , Complejo de la Endopetidasa Proteasomal/fisiología , Subunidades de Proteína/fisiología , Secuencia de Aminoácidos , Arabidopsis/anatomía & histología , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas Portadoras/química , Proteínas Portadoras/fisiología , Desarrollo Embrionario/genética , Péptidos y Proteínas de Señalización Intracelular , Datos de Secuencia Molecular , Fenotipo , Polen/genética , Polen/crecimiento & desarrollo , Subunidades de Proteína/química , Subunidades de Proteína/genética , Semillas/anatomía & histología , Semillas/genética , Semillas/crecimiento & desarrollo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA