Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Ginseng Res ; 48(2): 149-162, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38465223

RESUMEN

Ginseng, the roots of Panax species, is an important medicinal herb used as a tonic. As ginsenosides are key bioactive components of ginseng, holistic chemical profiling of them has provided many insights into understanding ginseng. Mass spectrometry has been a major methodology for profiling, which has been applied to realize numerous goals in ginseng research, such as the discrimination of different species, geographical origins, and ages, and the monitoring of processing and biotransformation. This review summarizes the various applications of ginsenoside profiling in ginseng research over the last three decades that have contributed to expanding our understanding of ginseng. However, we also note that most of the studies overlooked a crucial factor that influences the levels of ginsenosides: genetic variation. To highlight the effects of genetic variation on the chemical contents, we present our results of untargeted and targeted ginsenoside profiling of different genotypes cultivated under identical conditions, in addition to data regarding genome-level genetic diversity. Additionally, we analyze the other limitations of previous studies, such as imperfect variable control, deficient metadata, and lack of additional effort to validate causation. We conclude that the values of ginsenoside profiling studies can be enhanced by overcoming such limitations, as well as by integrating with other -omics techniques.

2.
Phytochemistry ; 215: 113836, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37619899

RESUMEN

Autophagy is a crucial process for maintaining cellular homeostasis by degrading and recycling unnecessary or damaged cellular components. In the process of exploring autophagy regulators in plants, unique nine oligomeric flavonoids linked by the bonding of C-3 and C-4, consisting of three pairs of biflavonoids, linderanidins A-C [(+)-1/(-)-1, (+)-2/(-)-2, and (+)-3/(-)-3], and three trimeric A-type proanthocyanidins, linderanidins D-F (4-6), were isolated from the roots of Lindera erythrocarpa. The structures and absolute configurations of these compounds were determined using various techniques, such as 1D and 2D NMR, mass spectrometry, X-ray crystallography, and electronic circular dichroism. All isolates were evaluated for their ability to regulate autophagy, and compounds (±)-1-(±)-3, (-)-1-(-)-3, (+)-1-(+)-3 and 4 were found to inhibit autophagy by blocking the fusion process between autophagosome and lysosome in HEK293 cells. This study suggests that unique oligomeric flavonoids possessing a C-3-C-4 linkage derived from the roots of L. erythrocarpa are potent autophagy inhibitors.


Asunto(s)
Flavonoides , Lindera , Humanos , Flavonoides/química , Lindera/química , Células HEK293 , Extractos Vegetales/química , Autofagia , Raíces de Plantas/química
3.
J Ginseng Res ; 47(1): 44-53, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36644396

RESUMEN

Background: The genus Panax in the Araliaceae family has been used as traditional medicinal plants worldwide and is known to biosynthesize ginsenosides and phytosterols. However, genetic variation between Panax species has influenced their biosynthetic pathways is not fully understood. Methods: Simultaneous analysis of transcriptomes and metabolomes obtained from adventitious roots of two tetraploid species (Panax ginseng and P. quinquefolius) and two diploid species (P. notoginseng and P. vietnamensis) revealed the diversity of their metabolites and related gene expression profiles. Results: The transcriptome analysis showed that 2,3-OXIDOSQUALENE CYCLASEs (OSCs) involved in phytosterol biosynthesis are upregulated in the diploid species, while the expression of OSCs contributing to ginsenoside biosynthesis is higher in the tetraploid species. In agreement with these results, the contents of dammarenediol-type ginsenosides were higher in the tetraploid species relative to the diploid species. Conclusion: These results suggest that a whole-genome duplication event has influenced the triterpene biosynthesis pathway in tetraploid Panax species during their evolution or ecological adaptation. This study provides a basis for further efforts to explore the genetic variation of the Panax genus.

4.
Poult Sci ; 102(2): 102315, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36473384

RESUMEN

Three different medicinal plants that consisted of the formulated mixture (CAVAC-1901) have been traditionally used for distinct medicinal purposes in different areas. Angelica dahurica has been used as an important ingredient of a prescription, Gumiganghwal-tang, for the common cold and influenza. Curcuma longa has been utilized for the treatment of asthma, and jaundice. Pinus densiflora (Korean red pine) has been used to improve memory and brain function for the treatment of vascular. Industrial livestock, which are characterized by dense breeding, are vulnerable to influenza infection, causing severe economic loss and social problems. However, there are no viable alternatives due to the risk of the occurrence of variants. Therefore, the aim of this study was to discover anti-influenza combinations of different medicinal plants with the concept of a multicomponent and multitarget (MCMT) strategy in traditional Chinese medicine (TCM). As part of a continuous project, 3 medicinal plants whose inhibitory activity against influenza A was previously reported at the compound level, and the inhibition of cytopathic effects (CPEs) by these formulated mixtures was evaluated against influenza A virus H1N1. A selected combination with an optimal ratio exhibiting synergistic activity was assessed for its antiviral activity in chickens against the highly pathogenic avian influenza (HPAI) H5N6. The selected combination (CAVAC-1901) showed potent inhibitory effects on the expression of neuraminidase and nucleoprotein, by RT-qPCR, Western blot, and immunofluorescence assays. The antiviral activity was more evident in chickens infected with H5N6. The sample-treated group (50 mg/kg/d) decreased mortality and virus titers in various organs. Our results indirectly suggest synergistic inhibitory activity of the combination of 3 different medicinal plants with different modes of action. Taken together, an optimally formulated mixture (CAVAC-1901) could serve as an effective alternative to current measures to minimize damage caused by HPAIs.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Plantas Medicinales , Animales , Antivirales/farmacología , Pollos , Fitomejoramiento
5.
Phytochemistry ; 206: 113521, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36435211

RESUMEN

Natural guanidines, molecules that contain the guanidine moiety, are structurally unique and often exhibit potent biological activities. A phytochemical investigation of the leaves of Alchornea rugosa (Lour.) Müll.Arg. by MS/MS-based molecular networking revealed eight undescribed guanidine-flavanol conjugates named rugonines A-H. The chemical structures of the isolated compounds were comprehensively elucidated by NMR spectroscopy, HRESIMS, and circular dichroism (CD) analysis. All isolated compounds were tested for autophagosome formation in HEK293 cells stably expressing GFP-LC3. The results revealed that compounds rugonines D-G showed potential autophagy inhibitory activity.


Asunto(s)
Catequina , Euphorbiaceae , Humanos , Extractos Vegetales/química , Guanidina/farmacología , Guanidina/análisis , Catequina/farmacología , Euphorbiaceae/química , Células HEK293 , Espectrometría de Masas en Tándem , Guanidinas/farmacología , Guanidinas/análisis , Hojas de la Planta/química , Autofagia
6.
J Nat Prod ; 83(12): 3661-3670, 2020 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-33256407

RESUMEN

With the advent of senolytic agents capable of selectively removing senescent cells in old tissues, the perception of age-associated diseases has been changing from being an inevitable to a preventable phenomenon of human life. In the search for materials with senolytic activity from natural products, six new flavonostilbenes (1-6), three new phenylethylchromanones (7-9), three new phenylethylchromones (10-12), and four known compounds (13-16) were isolated from the roots of Rhamnoneuron balansae. The chemical structures of these isolated compounds were determined based on the interpretation of spectroscopic data, including 1D and 2D NMR, ECD, and HRMS. The absolute configuration of compound 1 was also determined by a Mosher ester analysis and ECD calculations. Compounds 6-8 were shown to selectively destroy senescent cells, and the promoter activity of p16INK4A, a representative senescence marker, was reduced significantly by compound 6. The present results suggest the potential activity of flavonostilbene and phenylethylchromanone skeletons from R. balansae as new senolytics.


Asunto(s)
Senescencia Celular , Malvales/química , Fenoles/química , Raíces de Plantas/química , Cromatografía Líquida de Alta Presión/métodos , Extractos Vegetales/química , Análisis Espectral/métodos
7.
Phytochemistry ; 170: 112181, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31727321

RESUMEN

Gymnema sylvestre (Retz.) R. Br. ex Schult. has a long history to be used as an antidiabetic herbal medicine. Various varieties of G. sylvestre, have been studied intensively on their 3ß-hydroxy oleanane triterpenoid composition for hypoglycemic effects. It is also well-known that most species belonging to the same genus have similar chemical composition and biological activity. Thus, an extract of the Gymnema latifolium Wall. ex Wight, which showed considerable protein tyrosine phosphatase 1B (PTP1B) inhibitory activity (>70% inhibition at 30 µg/mL), was studied intensively. Extensive chemical investigation on the 70% EtOH of G. latifolium led to the isolation of four previously undescribed oleanane hemiacetal glycosides, gymlatinosides GL1-GL4, three previously undescribed oleanane glycosides, gymlatinosides GL5-GL7, and two known 3ß-hydroxy oleanane analogs. The structures of the previously undescribed compounds were elucidated using diverse spectroscopic methods. The hemiacetal structure of the glycoside portion was further elaborated precisely by HMBC and J resolved proton NMR. Gymlatinosides GL2 and GL3 showed considerable PTP1B inhibitory effect.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Glicósidos/farmacología , Gymnema/química , Ácido Oleanólico/análogos & derivados , Fitoquímicos/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Glicósidos/química , Glicósidos/aislamiento & purificación , Humanos , Estructura Molecular , Ácido Oleanólico/química , Ácido Oleanólico/aislamiento & purificación , Ácido Oleanólico/farmacología , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
8.
J Nat Prod ; 82(12): 3249-3266, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31763839

RESUMEN

The major class of bioactive metabolites in Gymnema sylvestre, a popular Ayurvedic medicinal plant for the treatment of diabetes mellitus, is oleanane triterpenoids. In this study, a targeted, biosynthesis-inspired approach using UHPLC-qTOF/MS was implemented to elucidate the whole chemical profile of this plant for the standardization of the Vietnamese G. sylvestre variety. The known compounds were first determined to identify the building blocks of the biosynthetic intermediates and the construction rules for synthesizing oleanane triterpenoids in the plant. These blocks were recombined to build a virtual library of all reasonable compounds consistent with the deduced construction rules. Various techniques, including relative mass defect filtering, multiple key ion analysis, mass fragmentation analysis, and comparison with standard references, were applied to determine the presence of these predicted compounds. Conventional isolation and structure elucidation of six of the new compounds were carried out to identify the new building blocks and validate the assignments. Consequently, 119 peaks were quickly assigned to oleanane triterpenoids, and among them, 77 peaks were predicted to be new compounds based on their molecular formulas and mass fragmentation patterns. All the identified metabolites were then classified into different layers to analyze their logical relationships, and a multilayered chemical profile of the oleanane triterpenoids was constructed. This new approach is expected to be practical for characterizing structures of modular secondary metabolites, such as triterpenoid saponins, and for proposing biosynthetic relationships among compounds of the same class of metabolites in medicinal plants.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Gymnema sylvestre/metabolismo , Ácido Oleanólico/análogos & derivados , Análisis Espectral/métodos , Triterpenos/metabolismo , Glicósidos/metabolismo , Estructura Molecular , Ácido Oleanólico/química , Ácido Oleanólico/metabolismo , Triterpenos/química
9.
Sci Rep ; 9(1): 17430, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31758082

RESUMEN

Many natural product chemists are working to identify a wide variety of novel secondary metabolites from natural materials and are eager to avoid repeatedly discovering known compounds. Here, we developed liquid chromatography/mass spectrometry (LC/MS) data-processing protocols for assessing high-throughput spectral data from natural sources and scoring the novelty of unknown metabolites from natural products. This approach automatically produces representative MS spectra (RMSs) corresponding to single secondary metabolites in natural sources. In this study, we used the RMSs of Agrimonia pilosa roots and aerial parts as models to reveal the structural similarities of their secondary metabolites and identify novel compounds, as well as isolation of three types of nine new compounds including three pilosanidin- and four pilosanol-type molecules and two 3-hydroxy-3-methylglutaryl (HMG)-conjugated chromones. Furthermore, we devised a new scoring system, the Fresh Compound Index (FCI), which grades the novelty of single secondary metabolites from a natural material using an in-house database constructed from 466 representative medicinal plants from East Asian countries. We expect that the FCIs of RMSs in a sample will help natural product chemists to discover other compounds of interest with similar chemical scaffolds or novel compounds and will provide insights relevant to the structural diversity and novelty of secondary metabolites in natural products.


Asunto(s)
Productos Biológicos/análisis , Cromatografía Liquida , Espectrometría de Masas , Metabolismo Secundario , Análisis Espectral , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos
10.
Sci Rep ; 8(1): 16860, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30443024

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a devastating and common chronic lung disease pathologically characterized by loss of epithelial cells and activation of fibroblasts and myofibroblasts. The etiology of IPF remains unclear and the disease pathology is poorly understood with no known efficacious therapy. PM014 is an herbal extract that has been shown to have beneficial effects in pulmonary diseases, which are likely to exert anti-inflammatory bioactions. In the present study, we observed that bleomycin (BLM) caused increased inflammatory infiltration as well as collagen deposition in lungs of mice on day 14 after treatment. Administration of PM014 suppressed BLM-induced inflammatory responses and fibrotic changes in dose-dependent manner in mice. Additionally, we provided in vitro evidence suggesting that PM014 inhibited TGF-ß1-induced epithelial-mesenchymal transition (EMT) and fibroblast activation in alveolar epithelial cells and human lung fibroblasts from healthy donor and IPF patients. PM014 appeared to target TGF-ß1 signaling via Smad-dependent pathways and p38 mitogen-activated protein kinases (MAPKs) pathways. Taken together, our data suggest that PM014 administration exerts a protective effect against lung fibrosis and highlight PM014 as a viable treatment option that may bring benefits to patient with IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Extractos Vegetales/uso terapéutico , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Células A549 , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Bleomicina , Peso Corporal/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Fibrosis Pulmonar Idiopática/patología , Masculino , Ratones Endogámicos C57BL , Extractos Vegetales/farmacología , Alveolos Pulmonares/patología , Estándares de Referencia , Proteínas Smad/metabolismo , Análisis de Supervivencia , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Sci Rep ; 8(1): 11744, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30082711

RESUMEN

Ginsenosides are dammarane-type or triterpenoidal saponins that contribute to the various pharmacological activities of the medicinal herb Panax ginseng. The putative biosynthetic pathway for ginsenoside biosynthesis is known in P. ginseng, as are some of the transcripts and enzyme-encoding genes. However, few genes related to the UDP-glycosyltransferases (UGTs), enzymes that mediate glycosylation processes in final saponin biosynthesis, have been identified. Here, we generated three replicated Illumina RNA-Seq datasets from the adventitious roots of P. ginseng cultivar Cheongsun (CS) after 0, 12, 24, and 48 h of treatment with methyl jasmonate (MeJA). Using the same CS cultivar, metabolomic data were also generated at 0 h and every 12-24 h thereafter until 120 h of MeJA treatment. Differential gene expression, phylogenetic analysis, and metabolic profiling were used to identify candidate UGTs. Eleven candidate UGTs likely to be involved in ginsenoside glycosylation were identified. Eight of these were considered novel UGTs, newly identified in this study, and three were matched to previously characterized UGTs in P. ginseng. Phylogenetic analysis further asserted their association with ginsenoside biosynthesis. Additionally, metabolomic analysis revealed that the newly identified UGTs might be involved in the elongation of glycosyl chains of ginsenosides, especially of protopanaxadiol (PPD)-type ginsenosides.


Asunto(s)
Ginsenósidos/biosíntesis , Panax/enzimología , Panax/metabolismo , Sapogeninas/metabolismo , Regulación de la Expresión Génica de las Plantas , Panax/genética , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Fitoterapia ; 115: 46-51, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27702665

RESUMEN

A new acetophenone, 2,4,6-trihydroxy-3-methylacetophenone-2-O-ß-d-glucoside (1), together with 21 known compounds; one acetophenone (2), four chromone glycosides (3-6), six phenylpropanoids (7-12), six sesquiterpenoids (13-18), two triterpenoids (19 and 20), one sterol (21), and one tannin (22) were isolated from the flower buds of Syzygium aromaticum (cloves). The structure of the new compound 1 was determined by spectroscopic analyses including 1D-, 2D-NMR and HRMS interpretation. Among the isolates, one acetophenone (2), three phenylpropanoids (10-12), and one sesquiterpenoid (13) were isolated from the flower buds of S. aromaticum for the first time in this study. All the isolates (1-22) were evaluated for their cytotoxicity against human ovarian cancer cells (A2780) using MTT assays. Some of the isolates (5, 6, 9, 15, 17, 19, 20, and 21) showed either moderate or weak cytotoxicity on A2780 cells.


Asunto(s)
Acetofenonas/química , Antineoplásicos Fitogénicos/química , Flores/química , Glucósidos/química , Syzygium/química , Acetofenonas/aislamiento & purificación , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral/efectos de los fármacos , Femenino , Glucósidos/aislamiento & purificación , Humanos , Estructura Molecular , Neoplasias Ováricas/patología
13.
Arch Pharm Res ; 39(2): 231-239, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26306655

RESUMEN

Fourteen compounds, coumarin (1), demethylsuberosin (2), xanthotoxin (3), psoralen (4), decursinol (5), decursin (6), decursinol angelate (7), chikusetsusaponin IVa (8), chikusetsusaponin IVa methyl ester (9), ethyl caffeate (10), syringaresinol (11), cnidilide (12), farnesol (13), and linoleic acid (14), were isolated from phytopharmaceutical PG201 (Layla(®)) by activity-guided fractionation utilizing inhibitory activity on nitric oxide (NO) production in vitro. The isolates 1-14 were evaluated for their inhibitory activity on LPS-induced NO and prostaglandin E2 (PGE2) productions in RAW 264.7 cells. All the compounds except 14 displayed suppressive effects on LPS-induced NO and PGE2 production with IC50 values ranging from 8 to 60 µM. Among these, compound 10 showed the most potent inhibitory effect on NO production from RAW 264.7 cells with an IC50 value of 8.25 µM. Compounds 2, 9, and 10 exhibited high inhibitory effects on PGE2 production with the IC50 values of 9.42, 7.51, and 6.49 µM, respectively. These findings suggest that compounds 2, 9, and 10 are the potential anti-inflammatory active constituents of PG201 and further study may be needed to explain their mechanism of action.


Asunto(s)
Antiinflamatorios/farmacología , Dinoprostona/metabolismo , Inflamación/prevención & control , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Óxido Nítrico/metabolismo , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/química , Relación Dosis-Respuesta a Droga , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones , Estructura Molecular , Fitoterapia , Extractos Vegetales/química , Plantas Medicinales , Células RAW 264.7
14.
Chem Pharm Bull (Tokyo) ; 63(9): 746-51, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26329870

RESUMEN

Four new dibenzocyclooctadiene lignan glucosides, schisandrosides A-D (1-4), as well as two known rare nortriterpenoids, micrandilactone C (5) and propindilactone Q (6), were isolated from the roots of Schisandra chinensis BAILLON (Schisandraceae). The structure of compounds 1-4 were elucidated by physical and spectroscopic data interpretation. To the best of our knowledge, schisandrosides A-D (1-4) represent the first example of a dibenzocyclooctadiene lignan glycoside.


Asunto(s)
Ciclooctanos/química , Glucósidos/química , Lignanos/química , Extractos Vegetales/química , Raíces de Plantas/química , Schisandraceae/química , Ciclooctanos/aislamiento & purificación , Glucósidos/aislamiento & purificación , Lignanos/aislamiento & purificación , Conformación Molecular , Extractos Vegetales/aislamiento & purificación , Estereoisomerismo
15.
Phytother Res ; 29(9): 1330-1338, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26062076

RESUMEN

Cyperus rotundus (Cyperaceae) has been widely used in traditional medicine for the treatment of various diseases, including cancer. Although an anti-tumour effect has been suggested for C. rotundus, the anti-tumour effects and underlying molecular mechanisms of its bioactive compounds are poorly understood. The n-hexane fraction of an ethanol extract of C. rotundus rhizomes was found to inhibit cell growth in ovarian cancer (A2780, SKOV3 and OVCAR3) and endometrial cancer (Hec1A and Ishikawa) cells. Among the thirteen sesquiterpenes isolated from the n-hexane fraction, some patchoulane-type compounds, but not eudesmane-type compounds, showed moderate cytotoxic activity in human ovarian cancer cells. In particular, the patchoulane sesquiterpene 6-acetoxy cyperene had the most potent cytotoxicity. In this regard, propidium iodide/Annexin V staining and terminal deoxynucleotidyl transferase dUTP (deoxynucleotide triphosphate) nick end labeling assay were performed to study cell cycle progression and apoptosis. 6-acetoxy cyperene induced apoptosis, as shown by the accumulation of sub-G1 and apoptotic cells. Furthermore, treatment with 6-acetoxy cyperene stimulated the activation of caspase-3, caspase-8 and caspase-9 and poly(ADP-ribose)polymerase in a dose-dependent manner. Pretreatment with caspase inhibitors neutralized the pro-apoptotic activity of 6-acetoxy cyperene. Taken together, these data suggest that 6-acetoxy cyperene, a patchoulane-type sesquiterpene isolated from C. rotundus rhizomes, is an anti-tumour compound that causes caspase-dependent apoptosis in ovarian cancer cells. Copyright © 2015 John Wiley & Sons, Ltd.

16.
Arch Pharm Res ; 38(11): 1963-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25855013

RESUMEN

A new terthiophene, 3'-hydroxy-2,2':5',2″-terthiophene-3'-O-ß-D-glucopyranoside (1) and a new oleanane-type saponin, echinocystic acid-3-O-(6-O-acetyl)-ß-D-glucopyranoside (7) were isolated from the aerial parts of Eclipta prostrata L. Moreover, five thiophenes (2-6), seven triterpenoids (8-14), two coumestans (15 and 16), and four flavonoids (17-20) having previously known chemical structures were isolated during the same course of this study. All the isolates 1-20 were evaluated for their cytotoxicity against human ovarian cancer cells (SKOV3) using MTT assays.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Eclipta/química , Neoplasias Ováricas/tratamiento farmacológico , Extractos Vegetales/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Ováricas/patología , Componentes Aéreos de las Plantas , Extractos Vegetales/química
17.
Bioorg Med Chem Lett ; 25(5): 1017-20, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25666824

RESUMEN

Three new canthinone type alkaloids, canthin-6-one-1-O-ß-D-apiofuranosyl-(1→2)-ß-D-glucopyranoside (1), canthin-6-one-1-O-[6-O-(3-hydroxy-3-methylglutaryl)]-ß-D-glucopyranoside (2) and canthin-6-one-1-O-[2-ß-D-apiofuranosyl-6-O-(3-hydroxy-3-methylglutaryl)]-ß-D-glucopyranoside (3) were isolated from the stem barks of Ailanthus altissima together with four quassinoids (4-7), seven phenylpropanoids (8-14) and a lignan of previously known structure (15). The inflammatory activities of the 15 isolates were screened on LPS-induced nitric oxide (NO), a proinflammatory mediator, in RAW 264.7 cells.


Asunto(s)
Ailanthus/química , Antiinflamatorios/química , Antiinflamatorios/farmacología , Carbolinas/química , Carbolinas/farmacología , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacología , Óxido Nítrico/antagonistas & inhibidores , Animales , Antiinflamatorios/aislamiento & purificación , Carbolinas/aislamiento & purificación , Línea Celular , Glucósidos/química , Glucósidos/aislamiento & purificación , Glucósidos/farmacología , Alcaloides Indólicos/aislamiento & purificación , Lipopolisacáridos/inmunología , Ratones , Óxido Nítrico/inmunología , Corteza de la Planta/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología
18.
Virol J ; 10: 303, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-24103432

RESUMEN

BACKGROUND: Human respiratory syncytial virus (hRSV) is a leading cause of severe lower respiratory infection and a major public health threat worldwide. To date, no vaccine or effective therapeutic agent has been developed. In a screen for potential therapeutic agents against hRSV, we discovered that an extract of Rosmarinus officinalis exerted a strong inhibitory effect against hRSV infection. Subsequent studies identified carnosic acid as a bioactive constituent responsible for anti-hRSV activity. Carnosic acid has been shown to exhibit potent antioxidant and anti-cancer activities. Anti-RSV activity of carnosic acid was further investigated in this study. METHODS: Effects of extracts from various plants and subfractions from R. officinalis on hRSV replication were determined by microneutralization assay and plaque assay. Several constituents were isolated from ethyl acetate fraction of R. officinalis and their anti-RSV activities were assessed by plaque assay as well as reverse-transcription quantitative PCR to determine the synthesis of viral RNAs. RESULTS: Among the tested bioactive constituents of R. officinalis, carnosic acid displayed the most potent anti-hRSV activity and was effective against both A- and B-type viruses. Carnosic acid efficiently suppressed the replication of hRSV in a concentration-dependent manner. Carnosic acid effectively suppressed viral gene expression without inducing type-I interferon production or affecting cell viability, suggesting that it may directly affect viral factors. A time course analysis showed that addition of carnosic acid 8 hours after infection still effectively blocked the expression of hRSV genes, further suggesting that carnosic acid directly inhibited the replication of hRSV. CONCLUSIONS: The current study demonstrates that carnosic acid, a natural compound that has already been shown to be safe for human consumption, has anti-viral activity against hRSV, efficiently blocking the replication of this virus. Carnosic acid inhibited both A- and B- type hRSV, while it did not affect the replication of influenza A virus, suggesting that its antiviral activity is hRSV-specific. Collectively, this study suggests the need for further evaluation of carnosic acid as a potential treatment for hRSV.


Asunto(s)
Abietanos/aislamiento & purificación , Abietanos/farmacología , Antivirales/farmacología , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Abietanos/toxicidad , Supervivencia Celular/efectos de los fármacos , Humanos , Pruebas de Neutralización , Extractos Vegetales/toxicidad , Reacción en Cadena en Tiempo Real de la Polimerasa , Virus Sincitial Respiratorio Humano/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rosmarinus/química , Ensayo de Placa Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA