Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Neuron ; 92(1): 126-142, 2016 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-27641493

RESUMEN

Precise connection of thalamic barreloids with their corresponding cortical barrels is critical for processing of vibrissal sensory information. Here, we show that PRG-2, a phospholipid-interacting molecule, is important for thalamocortical axon guidance. Developing thalamocortical fibers both in PRG-2 full knockout (KO) and in thalamus-specific KO mice prematurely entered the cortical plate, eventually innervating non-corresponding barrels. This misrouting relied on lost axonal sensitivity toward lysophosphatidic acid (LPA), which failed to repel PRG-2-deficient thalamocortical fibers. PRG-2 electroporation in the PRG-2-/- thalamus restored the aberrant cortical innervation. We identified radixin as a PRG-2 interaction partner and showed that radixin accumulation in growth cones and its LPA-dependent phosphorylation depend on its binding to specific regions within the C-terminal region of PRG-2. In vivo recordings and whisker-specific behavioral tests demonstrated sensory discrimination deficits in PRG-2-/- animals. Our data show that bioactive phospholipids and PRG-2 are critical for guiding thalamic axons to their proper cortical targets.


Asunto(s)
Orientación del Axón/fisiología , Corteza Cerebral/crecimiento & desarrollo , Proteínas del Citoesqueleto/fisiología , Lisofosfolípidos/fisiología , Proteínas de la Membrana/fisiología , Transducción de Señal/fisiología , Tálamo/crecimiento & desarrollo , Animales , Corteza Cerebral/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Discriminación en Psicología/fisiología , Conos de Crecimiento/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología , Fosforilación , Tálamo/metabolismo
2.
Exp Eye Res ; 88(3): 367-77, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18723015

RESUMEN

The efficacy of novel monoclonal antibodies that neutralize the pro-angiogenic mediator, sphingosine-1-phosphate (S1P), were tested using in vitro and in vivo angiogenesis models, including choroidal neovascularization (CNV) induced by laser disruption of Bruch's membrane. S1P receptor levels in human brain choroid plexus endothelial cells (CPEC), human lung microvascular endothelial cells, human retinal vascular endothelial cells, and circulating endothelial progenitor cells were examined by semi-quantitative PCR. The ability of murine or humanized anti-S1P monoclonal antibodies (mAbs) to inhibit S1P-mediated microvessel tube formation by CPEC on Matrigel was evaluated and capillary density in subcutaneous growth factor-loaded Matrigel plugs was determined following anti-S1P treatment. S1P promoted in vitro capillary tube formation in CPEC consistent with the presence of cognate S1P(1-5) receptor expression by these cells and the S1P antibody induced a dose-dependent reduction in microvessel tube formation. In a murine model of laser-induced rupture of Bruch's membrane, S1P was detected in posterior cups of mice receiving laser injury, but not in uninjured controls. Intravitreous injection of anti-S1P mAbs dramatically inhibited CNV formation and sub-retinal collagen deposition in all treatment groups (p<0.05 compared to controls), thereby identifying S1P as a previously unrecognized mediator of angiogenesis and subretinal fibrosis in this model. These findings suggest that neutralizing S1P with anti-S1P mAbs may be a novel method of treating patients with exudative age-related macular degeneration by reducing angiogenesis and sub-retinal fibrosis, which are responsible for visual acuity loss in this disease.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Neovascularización Coroidal/prevención & control , Lisofosfolípidos/inmunología , Esfingosina/análogos & derivados , Inhibidores de la Angiogénesis/farmacología , Animales , Neovascularización Coroidal/etiología , Neovascularización Coroidal/patología , Colágeno , Modelos Animales de Enfermedad , Combinación de Medicamentos , Evaluación Preclínica de Medicamentos/métodos , Femenino , Fibrosis/prevención & control , Expresión Génica , Laminina , Rayos Láser , Lisofosfolípidos/análisis , Lisofosfolípidos/farmacología , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/efectos de los fármacos , Proteoglicanos , ARN Mensajero/genética , Conejos , Receptores de Lisoesfingolípidos/biosíntesis , Receptores de Lisoesfingolípidos/genética , Retina/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Esfingosina/análisis , Esfingosina/inmunología , Esfingosina/farmacología , Cuerpo Vítreo/química
3.
Am J Physiol Cell Physiol ; 288(6): C1367-73, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15659717

RESUMEN

Sphingomyelin derivatives exert various second messenger actions in numerous tissues. Sphingosine (SPH) and sphingosine 1-phosphate (S1P) are two major sphingomyelin derivatives present at high levels in blood. The aim of the present work was to investigate whether S1P and SPH exert relevant actions in mouse skeletal muscle contractility and fatigue. Exogenous S1P and SPH administration caused a significant reduction of tension decline during fatigue of extensor digitorum longus muscle. Final tension after the fatiguing protocol was 40% higher than in untreated muscle. Interestingly, N,N-dimethylsphingosine, an inhibitor of SPH kinase (SK), abolished the effect of supplemented SPH but not that of S1P, suggesting that SPH acts through its conversion to S1P. Moreover, SPH was not effective in Ca(2+)-free solutions, in agreement with the hypothesis that SPH action is dependent on its conversion to S1P by the Ca(2+)-requiring enzyme SK. In contrast to SPH, S1P produced its positive effects on fatigue in Ca(2+)-free conditions, indicating that S1P action does not require Ca(2+) entry and most likely is receptor mediated. The effects of S1P could be ascribed in part to its ability to prevent the reduction (-20 mV) of action potential amplitude caused by fatigue. In conclusion, these results indicate that extracellular S1P has protective effects during the development of muscle fatigue and that the extracellular conversion of SPH to S1P may represent a rheostat mechanism to protect skeletal muscle from possible cytotoxic actions of SPH.


Asunto(s)
Lisofosfolípidos/fisiología , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Esfingosina/análogos & derivados , Esfingosina/fisiología , Animales , Calcio/fisiología , Relación Dosis-Respuesta a Droga , Indoles/farmacología , Lisofosfolípidos/farmacología , Maleimidas/farmacología , Ratones , Ratones Endogámicos , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Fatiga Muscular/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Esfingosina/farmacología
4.
Am J Physiol Cell Physiol ; 284(3): C780-90, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12421694

RESUMEN

Calcium channels are important in a variety of cellular events including muscle contraction, signaling, proliferation, and apoptosis. Sphingolipids have been recognized as mediators of intracellular calcium release through their actions on a calcium channel, sphingolipid calcium release-mediating protein of the endoplasmic reticulum (SCaMPER). The current study investigates the expression and function of SCaMPER in cardiomyocytes. Northern analyses and RT-PCR cloning and sequencing revealed SCaMPER expression in both human and rat cardiac tissue. Immunofluorescence and Western blot analyses demonstrated that SCaMPER is abundant in cardiac tissue and is localized to the sarcotubular junction. This was confirmed by the colocalization of SCaMPER with dihydropyridine and ryanodine receptors by confocal microscopy. Purified T tubules were shown to contain SCaMPER and immunoelectron micrographs suggested that SCaMPER is located to the junctional T tubules, but a junctional SR localization cannot be ruled out. The sphingolipid ligand for SCaMPER, sphingosylphosphorylcholine (SPC), initiated calcium release from the cardiomyocyte SR. Importantly, antisense knockdown of SCaMPER mRNA produced a substantial reduction of sphingolipid-induced calcium release, suggesting that SCaMPER is a potentially important calcium channel of cardiomyocytes.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/genética , Membrana Celular/metabolismo , Miocitos Cardíacos/metabolismo , Esfingolípidos/metabolismo , Animales , Animales Recién Nacidos , Calcio/metabolismo , Canales de Calcio/genética , Membrana Celular/genética , ADN Complementario/análisis , ADN Complementario/genética , Dimerización , Inmunohistoquímica , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Microscopía Electrónica , Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Datos de Secuencia Molecular , Miocitos Cardíacos/ultraestructura , Estructura Cuaternaria de Proteína/genética , ARN Mensajero/genética , ARN Mensajero/aislamiento & purificación , Ratas , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/ultraestructura , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA