Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Redox Biol ; 63: 102741, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37230004

RESUMEN

Olanzapine (OLA), a widely used second-generation antipsychotic (SGA), causes weight gain and metabolic alterations when administered orally to patients. Recently, we demonstrated that, contrarily to the oral treatment which induces weight gain, OLA administered via intraperitoneal (i.p.) in male mice resulted in body weight loss. This protection was due to an increase in energy expenditure (EE) through a mechanism involving the modulation of hypothalamic AMPK activation by higher OLA levels reaching this brain region compared to those of the oral treatment. Since clinical studies have shown hepatic steatosis upon chronic treatment with OLA, herein we further investigated the role of the hypothalamus-liver interactome upon OLA administration in wild-type (WT) and protein tyrosine phosphatase 1B knockout (PTP1B-KO) mice, a preclinical model protected against metabolic syndrome. WT and PTP1B-KO male mice were fed an OLA-supplemented diet or treated via i.p. Mechanistically, we found that OLA i.p. treatment induces mild oxidative stress and inflammation in the hypothalamus in a JNK1-independent and dependent manner, respectively, without features of cell dead. Hypothalamic JNK activation up-regulated lipogenic gene expression in the liver though the vagus nerve. This effect concurred with an unexpected metabolic rewiring in the liver in which ATP depletion resulted in increased AMPK/ACC phosphorylation. This starvation-like signature prevented steatosis. By contrast, intrahepatic lipid accumulation was observed in WT mice treated orally with OLA; this effect being absent in PTP1B-KO mice. We also demonstrated an additional benefit of PTP1B inhibition against hypothalamic JNK activation, oxidative stress and inflammation induced by chronic OLA i.p. treatment, thereby preventing hepatic lipogenesis. The protection conferred by PTP1B deficiency against hepatic steatosis in the oral OLA treatment or against oxidative stress and neuroinflammation in the i.p. treatment strongly suggests that targeting PTP1B might be also a therapeutic strategy to prevent metabolic comorbidities in patients under OLA treatment in a personalized manner.


Asunto(s)
Hígado Graso , Transducción de Señal , Masculino , Animales , Ratones , Olanzapina/metabolismo , Transducción de Señal/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Proteínas Quinasas Activadas por AMP/metabolismo , Hígado/metabolismo , Hígado Graso/tratamiento farmacológico , Hígado Graso/genética , Hígado Graso/prevención & control , Ratones Noqueados , Inflamación/metabolismo , Ácido Graso Sintasas/metabolismo , Aumento de Peso , Hipotálamo/metabolismo , Ratones Endogámicos C57BL
2.
Metabolism ; 137: 155335, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36272468

RESUMEN

BACKGROUND: Second-generation antipsychotics (SGAs) are a mainstay therapy for schizophrenia. SGA-treated patients present higher risk for weight gain, dyslipidemia and hyperglycemia. Herein, we evaluated the effects of olanzapine (OLA), widely prescribed SGA, in mice focusing on changes in body weight and energy balance. We further explored OLA effects in protein tyrosine phosphatase-1B deficient (PTP1B-KO) mice, a preclinical model of leptin hypersensitivity protected against obesity. METHODS: Wild-type (WT) and PTP1B-KO mice were fed an OLA-supplemented diet (5 mg/kg/day, 7 months) or treated with OLA via intraperitoneal (i.p.) injection or by oral gavage (10 mg/kg/day, 8 weeks). Readouts of the crosstalk between hypothalamus and brown or subcutaneous white adipose tissue (BAT and iWAT, respectively) were assessed. The effects of intrahypothalamic administration of OLA with adenoviruses expressing constitutive active AMPKα1 in mice were also analyzed. RESULTS: Both WT and PTP1B-KO mice receiving OLA-supplemented diet presented hyperphagia, but weight gain was enhanced only in WT mice. Unexpectedly, all mice receiving OLA via i.p. lost weight without changes in food intake, but with increased energy expenditure (EE). In these mice, reduced hypothalamic AMPK phosphorylation concurred with elevations in UCP-1 and temperature in BAT. These effects were also found by intrahypothalamic OLA injection and were abolished by constitutive activation of AMPK in the hypothalamus. Additionally, OLA i.p. treatment was associated with enhanced Tyrosine Hydroxylase (TH)-positive innervation and less sympathetic neuron-associated macrophages in iWAT. Both central and i.p. OLA injections increased UCP-1 and TH in iWAT, an effect also prevented by hypothalamic AMPK activation. By contrast, in mice fed an OLA-supplemented diet, BAT thermogenesis was only enhanced in those lacking PTP1B. Our results shed light for the first time that a threshold of OLA levels reaching the hypothalamus is required to activate the hypothalamus BAT/iWAT axis and, therefore, avoid weight gain. CONCLUSION: Our results have unraveled an unexpected metabolic rewiring controlled by hypothalamic AMPK that avoids weight gain in male mice treated i.p. with OLA by activating BAT thermogenesis and iWAT browning and a potential benefit of PTP1B inhibition against OLA-induced weight gain upon oral treatment.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Hipotálamo , Masculino , Ratones , Animales , Olanzapina/metabolismo , Olanzapina/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Fosforilación , Hipotálamo/metabolismo , Termogénesis/fisiología , Peso Corporal , Metabolismo Energético , Aumento de Peso , Tejido Adiposo Pardo/metabolismo
3.
Nat Metab ; 4(7): 901-917, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35879461

RESUMEN

Early-life determinants are thought to be a major factor in the rapid increase of obesity. However, while maternal nutrition has been extensively studied, the effects of breastfeeding by the infant on the reprogramming of energy balance in childhood and throughout adulthood remain largely unknown. Here we show that delayed weaning in rat pups protects them against diet-induced obesity in adulthood, through enhanced brown adipose tissue thermogenesis and energy expenditure. In-depth metabolic phenotyping in this rat model as well as in transgenic mice reveals that the effects of prolonged suckling are mediated by increased hepatic fibroblast growth factor 21 (FGF21) production and tanycyte-controlled access to the hypothalamus in adulthood. Specifically, FGF21 activates GABA-containing neurons expressing dopamine receptor 2 in the lateral hypothalamic area and zona incerta. Prolonged breastfeeding thus constitutes a protective mechanism against obesity by affecting long-lasting physiological changes in liver-to-hypothalamus communication and hypothalamic metabolic regulation.


Asunto(s)
Lactancia Materna , Obesidad , Animales , Femenino , Factores de Crecimiento de Fibroblastos , Humanos , Hipotálamo/metabolismo , Hígado/metabolismo , Ratones , Obesidad/metabolismo , Obesidad/prevención & control , Ratas
4.
Hepatology ; 75(3): 550-566, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34510498

RESUMEN

BACKGROUND AND AIMS: Hepatic ischemia-reperfusion injury (IRI) is the leading cause of early posttransplantation organ failure as mitochondrial respiration and ATP production are affected. A shortage of donors has extended liver donor criteria, including aged or steatotic livers, which are more susceptible to IRI. Given the lack of an effective treatment and the extensive transplantation waitlist, we aimed at characterizing the effects of an accelerated mitochondrial activity by silencing methylation-controlled J protein (MCJ) in three preclinical models of IRI and liver regeneration, focusing on metabolically compromised animal models. APPROACH AND RESULTS: Wild-type (WT), MCJ knockout (KO), and Mcj silenced WT mice were subjected to 70% partial hepatectomy (Phx), prolonged IRI, and 70% Phx with IRI. Old and young mice with metabolic syndrome were also subjected to these procedures. Expression of MCJ, an endogenous negative regulator of mitochondrial respiration, increases in preclinical models of Phx with or without vascular occlusion and in donor livers. Mice lacking MCJ initiate liver regeneration 12 h faster than WT and show reduced ischemic injury and increased survival. MCJ knockdown enables a mitochondrial adaptation that restores the bioenergetic supply for enhanced regeneration and prevents cell death after IRI. Mechanistically, increased ATP secretion facilitates the early activation of Kupffer cells and production of TNF, IL-6, and heparin-binding EGF, accelerating the priming phase and the progression through G1 /S transition during liver regeneration. Therapeutic silencing of MCJ in 15-month-old mice and in mice fed a high-fat/high-fructose diet for 12 weeks improves mitochondrial respiration, reduces steatosis, and overcomes regenerative limitations. CONCLUSIONS: Boosting mitochondrial activity by silencing MCJ could pave the way for a protective approach after major liver resection or IRI, especially in metabolically compromised, IRI-susceptible organs.


Asunto(s)
Hígado Graso/metabolismo , Regeneración Hepática/fisiología , Activación de Macrófagos/fisiología , Mitocondrias/metabolismo , Proteínas Mitocondriales , Chaperonas Moleculares , Daño por Reperfusión/metabolismo , Factores de Edad , Animales , Modelos Animales de Enfermedad , Metabolismo Energético/fisiología , Silenciador del Gen/fisiología , Rechazo de Injerto/prevención & control , Hígado/metabolismo , Trasplante de Hígado/métodos , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Daño por Reperfusión/prevención & control
5.
Diabetologia ; 64(2): 265-274, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33200240

RESUMEN

Obesity, which has long since reached epidemic proportions worldwide, is associated with long-term stress to a variety of organs and results in diseases including type 2 diabetes. In the brain, overnutrition induces hypothalamic stress associated with the activation of several signalling pathways, together with central insulin and leptin resistance. This central action of nutrient overload appears very rapidly, suggesting that nutrition-induced hypothalamic stress is a major upstream initiator of obesity and associated diseases. The cellular response to nutrient overload includes the activation of the stress-activated c-Jun N-terminal kinases (JNKs) JNK1, JNK2 and JNK3, which are widely expressed in the brain. Here, we review recent findings on the regulation and effects of these kinases, with particular focus on the hypothalamus, a key brain region in the control of energy and glucose homeostasis. JNK1 blocks the hypothalamic-pituitary-thyroid axis, reducing energy expenditure and promoting obesity. Recently, opposing roles have been identified for JNK1 and JNK3 in hypothalamic agouti gene-related protein (AgRP) neurons: while JNK1 activation in AgRP neurons induces feeding and weight gain and impairs insulin and leptin signalling, JNK3 (also known as MAPK10) deletion in the same neuronal population produces very similar effects. The opposing roles of these kinases, and the unknown role of hypothalamic JNK2, reflect the complexity of JNK biology. Future studies should address the specific function of each kinase, not only in different neuronal subsets, but also in non-neuronal cells in the central nervous system. Decoding the puzzle of brain stress kinases will help to define the central stimuli and mechanisms implicated in the control of energy balance. Graphical abstract.


Asunto(s)
Metabolismo Energético/fisiología , Hipotálamo/metabolismo , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo , Proteína Relacionada con Agouti/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Estrés del Retículo Endoplásmico , Conducta Alimentaria/fisiología , Glucosa/metabolismo , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Hipotálamo/citología , Insulina/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Leptina/metabolismo , Enfermedades Metabólicas/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Neuronas/citología , Glándula Tiroides/metabolismo , Aumento de Peso/fisiología
6.
EMBO J ; 37(22)2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30389661

RESUMEN

Nutrient overload in combination with decreased energy dissipation promotes obesity and diabetes. Obesity results in a hormonal imbalance, which among others activates G protein-coupled receptors utilizing diacylglycerol (DAG) as secondary messenger. Protein kinase D1 (PKD1) is a DAG effector, which integrates multiple nutritional and hormonal inputs, but its physiological role in adipocytes is unknown. Here, we show that PKD1 promotes lipogenesis and suppresses mitochondrial fragmentation, biogenesis, respiration, and energy dissipation in an AMP-activated protein kinase (AMPK)-dependent manner. Moreover, mice lacking PKD1 in adipocytes are resistant to diet-induced obesity due to elevated energy expenditure. Beiging of adipocytes promotes energy expenditure and counteracts obesity. Consistently, deletion of PKD1 promotes expression of the ß3-adrenergic receptor (ADRB3) in a CCAAT/enhancer binding protein (C/EBP)-α- and δ-dependent manner, which leads to the elevated expression of beige markers in adipocytes and subcutaneous adipose tissue. Finally, deletion of PKD1 in adipocytes improves insulin sensitivity and ameliorates liver steatosis. Thus, depletion of PKD1 in adipocytes increases energy dissipation by several complementary mechanisms and might represent an attractive strategy to treat obesity and its related complications.


Asunto(s)
Adipocitos/metabolismo , Adiposidad , Metabolismo Energético , Hígado Graso/metabolismo , Obesidad/metabolismo , Proteína Quinasa C/metabolismo , Grasa Subcutánea/metabolismo , Células 3T3-L1 , Adipocitos/patología , Animales , Proteína delta de Unión al Potenciador CCAAT/genética , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Hígado Graso/genética , Hígado Graso/patología , Femenino , Humanos , Masculino , Ratones , Ratones Mutantes , Obesidad/genética , Obesidad/patología , Proteína Quinasa C/genética , Receptores Adrenérgicos beta 3/genética , Receptores Adrenérgicos beta 3/metabolismo , Sistemas de Mensajero Secundario/genética , Grasa Subcutánea/fisiología
7.
Nat Commun ; 9(1): 3432, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-30143607

RESUMEN

p53 is a well-known tumor suppressor that has emerged as an important player in energy balance. However, its metabolic role in the hypothalamus remains unknown. Herein, we show that mice lacking p53 in agouti-related peptide (AgRP), but not proopiomelanocortin (POMC) or steroidogenic factor-1 (SF1) neurons, are more prone to develop diet-induced obesity and show reduced brown adipose tissue (BAT) thermogenic activity. AgRP-specific ablation of p53 resulted in increased hypothalamic c-Jun N-terminal kinase (JNK) activity before the mice developed obesity, and central inhibition of JNK reversed the obese phenotype of these mice. The overexpression of p53 in the ARC or specifically in AgRP neurons of obese mice decreased body weight and stimulated BAT thermogenesis, resulting in body weight loss. Finally, p53 in AgRP neurons regulates the ghrelin-induced food intake and body weight. Overall, our findings provide evidence that p53 in AgRP neurons is required for normal adaptations against diet-induced obesity.


Asunto(s)
Dieta/efectos adversos , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Tejido Adiposo Pardo/metabolismo , Proteína Relacionada con Agouti/metabolismo , Animales , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 8 Activada por Mitógenos/genética , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Ratas Sprague-Dawley , Factor Esteroidogénico 1/metabolismo , Proteína p53 Supresora de Tumor/genética
8.
Cell Metab ; 26(1): 212-229.e12, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28683288

RESUMEN

Thyroid hormones (THs) act in the brain to modulate energy balance. We show that central triiodothyronine (T3) regulates de novo lipogenesis in liver and lipid oxidation in brown adipose tissue (BAT) through the parasympathetic (PSNS) and sympathetic nervous system (SNS), respectively. Central T3 promotes hepatic lipogenesis with parallel stimulation of the thermogenic program in BAT. The action of T3 depends on AMP-activated protein kinase (AMPK)-induced regulation of two signaling pathways in the ventromedial nucleus of the hypothalamus (VMH): decreased ceramide-induced endoplasmic reticulum (ER) stress, which promotes BAT thermogenesis, and increased c-Jun N-terminal kinase (JNK) activation, which controls hepatic lipid metabolism. Of note, ablation of AMPKα1 in steroidogenic factor 1 (SF1) neurons of the VMH fully recapitulated the effect of central T3, pointing to this population in mediating the effect of central THs on metabolism. Overall, these findings uncover the underlying pathways through which central T3 modulates peripheral metabolism.


Asunto(s)
Metabolismo Energético , Hipotálamo/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Transducción de Señal , Hormonas Tiroideas/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Metabolismo de los Lípidos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Termogénesis , Triyodotironina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA