Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 4(6): e5984, 2009 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-19543385

RESUMEN

BACKGROUND: We developed a novel intranasal influenza vaccine approach that is based on the construction of replication-deficient vaccine viruses that lack the entire NS1 gene (DeltaNS1 virus). We previously showed that these viruses undergo abortive replication in the respiratory tract of animals. The local release of type I interferons and other cytokines and chemokines in the upper respiratory tract may have a "self-adjuvant effect", in turn increasing vaccine immunogenicity. As a result, DeltaNS1 viruses elicit strong B- and T- cell mediated immune responses. METHODOLOGY/PRINCIPAL FINDINGS: We applied this technology to the development of a pandemic H5N1 vaccine candidate. The vaccine virus was constructed by reverse genetics in Vero cells, as a 5:3 reassortant, encoding four proteins HA, NA, M1, and M2 of the A/Vietnam/1203/04 virus while the remaining genes were derived from IVR-116. The HA cleavage site was modified in a trypsin dependent manner, serving as the second attenuation factor in addition to the deleted NS1 gene. The vaccine candidate was able to grow in the Vero cells that were cultivated in a serum free medium to titers exceeding 8 log(10) TCID(50)/ml. The vaccine virus was replication deficient in interferon competent cells and did not lead to viral shedding in the vaccinated animals. The studies performed in three animal models confirmed the safety and immunogenicity of the vaccine. Intranasal immunization protected ferrets and mice from being infected with influenza H5 viruses of different clades. In a primate model (Macaca mulatta), one dose of vaccine delivered intranasally was sufficient for the induction of antibodies against homologous A/Vietnam/1203/04 and heterologous A/Indonesia/5/05 H5N1 strains. CONCLUSION/SIGNIFICANCE: Our findings show that intranasal immunization with the replication deficient H5N1 DeltaNS1 vaccine candidate is sufficient to induce a protective immune response against H5N1 viruses. This approach might be attractive as an alternative to conventional influenza vaccines. Clinical evaluation of DeltaNS1 pandemic and seasonal influenza vaccine candidates are currently in progress.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/genética , Vacunas contra la Influenza/uso terapéutico , Administración Intranasal , Animales , Bronquios/citología , Línea Celular , Pollos , Chlorocebus aethiops , Perros , Evaluación Preclínica de Medicamentos , Células Epiteliales/citología , Hurones , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Humanos , Vacunas contra la Influenza/metabolismo , Macrófagos/metabolismo , Macrófagos/virología , Ratones , Células Vero , Replicación Viral
2.
J Clin Endocrinol Metab ; 91(11): 4571-7, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16954161

RESUMEN

BACKGROUND: In vitro and in vivo studies have shown that dendritic cells (DCs) can stimulate antitumor T cell responses against medullary thyroid carcinoma (MTC). However, despite promising results in selected cases, the clinical efficacy of DC immunotherapy in patients with MTC has been limited. Recently, it has been demonstrated in mice that heat shock enhances the capacity of bone-marrow-derived DCs to stimulate antigen-specific T cells. The aim of our investigations was to evaluate whether heat shock also increases the capacity of human monocyte-derived DCs to stimulate antitumor T cell responses against MTC tumor cells. METHODS: DCs from six patients with metastatic MTC were pulsed with tumor lysate derived from allogeneic MTC tumor cells and were heat shocked for 12 h at 40 C or kept at 37 C. Thereafter, the DCs were matured and cocultured with T cells. Finally, the cytotoxic activity of T cells against MTC tumor cells was measured in vitro. RESULTS: In all patient samples, cytotoxic T cell responses against MTC tumor cells could be induced. Notably, heat-shocked DCs were more potent stimulators of cytotoxic T cell responses than control DCs, with T cells stimulated with heat-shocked DCs displaying a significantly increased cytotoxic activity against MTC tumor cells as compared with T cells stimulated with control DCs. In none of the experiments was a cytotoxic T cell response against unrelated pancreatic tumor cells (PANC-1) observed, using both control and heat-shocked DCs. CONCLUSIONS: Our study shows that heat-shocking DCs may be a valuable strategy to increase the immunostimulatory capacity of DCs used for immunotherapy of MTC.


Asunto(s)
Carcinoma Medular/inmunología , Células Dendríticas/metabolismo , Células Dendríticas/patología , Hipertermia Inducida/métodos , Linfocitos T Citotóxicos/metabolismo , Neoplasias de la Tiroides/inmunología , Adulto , Anciano , Antígenos de Superficie/metabolismo , Carcinoma Medular/patología , Carcinoma Medular/terapia , Diferenciación Celular , Extractos Celulares/inmunología , Femenino , Genes MHC Clase I , Antígenos HLA/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Humanos , Inmunoterapia/métodos , Técnicas In Vitro , Activación de Linfocitos/inmunología , Masculino , Persona de Mediana Edad , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/terapia , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA