Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Heliyon ; 10(1): e24009, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38230238

RESUMEN

Dia/betes is a serious health concern in many countries with high blood glucose, obesity, and multiple organ failures in late stages. Treating diabetes with effective drugs is still a challenging issue since most of the available diabetic drugs are not effective in combating diabetes, especially in secondary disease complications like obesity, retinopathy, and nephropathy associated with diabetes. Hence search for effective antidiabetic medication, especially from natural sources is mandatory with no adverse side effects. In the present study, a combined herbal aqueous extract of Tribulus terrestris and Curcuma amada was administered to diabetic-induced rats for 37 days. During experimentation, the mean blood glucose level was estimated and at the end of the experiment on the 37th day, the animal was sacrificed and observed for weight gain, plasma insulin, glycogen, glycated hemoglobin, urea, and creatinine level. The results revealed that TT and CA extract-treated diabetic groups significantly lowered the mean blood glucose level followed by increased glycogen and insulin level. Urea, creatinine, and HbA1c levels were considerably reduced in TT and CA-treated diabetic animals as compared to that of antidiabetic drug Glibenclamide-treated groups. TT and CA-treated diabetic animals showed considerable net body weight gain at the end of the experimental day. A concluding remark of the study shows that TT and CA herbal extract is effective against diabetes and it can be considered as an antidiabetic agent in ayurvedic medicine practice.

2.
Front Cell Infect Microbiol ; 13: 1295593, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38099219

RESUMEN

Introduction: Zinc oxide nanoparticles (ZnO-NPs) have garnered considerable interest in biomedical research primarily owing to their prospective therapeutic implications in combatting pathogenic diseases and microbial infections. The primary objective of this study was to examine the biosynthesis of zinc oxide nanowhiskers (ZnO-NWs) using chicken egg white (albumin) as a bio-template. Furthermore, this study aimed to explore the potential biomedical applications of ZnO NWs in the context of infectious diseases. Methods: The NWs synthesized through biological processes were observed using electron microscopy, which allowed for detailed examination of their characteristics. The results of these investigations indicated that the NWs exhibited a size distribution ranging from approximately 10 to 100 nm. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) mapping analyses successfully corroborated the size, dimensions, and presence of biological constituents during their formation. In this study, XTT assay and confocal imaging were employed to provide evidence of the efficacy of ZnO-NWs in the eradication of bacterial biofilms. The target bacterial strains were Staphylococcus aureus and Escherichia coli. Furthermore, we sought to address pertinent concerns regarding the biocompatibility of the ZnO-NWs. This was achieved through comprehensive evaluation of the absence of cytotoxicity in normal HEK-293T and erythrocytes. Results: The findings of this investigation unequivocally confirmed the biocompatibility of the ZnO-NWs. The biosynthesized ZnO-NWs demonstrated a noteworthy capacity to mitigate the dermatitis-induced consequences induced by Staphylococcus aureus in murine models after a therapeutic intervention lasting for one week. Discussion: This study presents a comprehensive examination of the biosynthesis of zinc oxide nanowhiskers (ZnO-NWs) derived from chicken egg whites. These findings highlight the considerable potential of biosynthesized ZnO-NWs as a viable option for the development of therapeutic agents targeting infectious diseases. The antibacterial efficacy of ZnO-NWs against both susceptible and antibiotic-resistant bacterial strains, as well as their ability to eradicate biofilms, suggests their promising role in combating infectious diseases. Furthermore, the confirmed biocompatibility of ZnO-NWs opens avenues for their safe use in biomedical applications. Overall, this research underscores the therapeutic promise of ZnO-NWs and their potential significance in future biomedical advancements.


Asunto(s)
Enfermedades Transmisibles , Dermatitis , Nanopartículas del Metal , Óxido de Zinc , Animales , Ratones , Óxido de Zinc/farmacología , Óxido de Zinc/química , Pollos , Clara de Huevo , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/farmacología
3.
Front Neurosci ; 17: 1127460, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214389

RESUMEN

Nanoparticle applications are becoming increasingly popular in fields such as photonics, catalysis, magnetics, biotechnology, manufacturing of cosmetics, pharmaceuticals, and medicines. There is still a huge pile of undermining information about the potential toxicity of these products to humans, which can be encountered by neuroprotective antioxidants and anti-inflammatory compounds. Nanoparticles can be administered using a variety of methods, including oronasal, topical applications, and enteral and parenteral routes of administration. There are different properties of these nanomaterials that characterize different pathways. Crossing of the blood-brain barrier, a direct sensory nerve-to-brain pathway whose barriers are bypassed, these checks otherwise prevent the nanoparticles from entering the brain. This inflicts damage to sensory neurons and receptors by nanoparticles that lead to neurotoxicity of the central nervous system. A number of routes make nanoparticles able to penetrate through the skin. Exposure by various routes to these nanoparticles can result in oxidative stress, and immune suppression triggers inflammatory cascades and genome-level mutations after they are introduced into the body. To out-power, these complications, plant-based antioxidants, essential oils, and dietary supplements can be put into use. Direct nanoparticle transport pathways from sensory nerves to the brain via blood have been studied grossly. Recent findings regarding the direct pathways through which nanoparticles cross the blood-brain barriers, how nanoparticles elicit different responses on sensory receptors and nerves, how they cause central neurotoxicity and neurodegeneration through sensory nerve routes, and the possible mechanisms that outcast these effects are discussed.

4.
Front Pharmacol ; 14: 1154034, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37021043

RESUMEN

Garlic (Allium sativum L.) possesses numerous pharmacological potential, including antibacterial, antiarthritic, antithrombotic, anticancer, hypoglycemic, and hypolipidemic effects. The anti-cancer action of garlic is likely the best researched of the many advantageous pharmacological effects, and its use offers significant protection against the risk of developing cancer. A few active metabolites of garlic have been reported to be essential in the destruction of malignant cells due to their multi-targeted activities and lack of significant toxicity. The bioactive compounds in garlic having anticancer properties include diallyl trisulfide, allicin, allyl mercaptan diallyl disulfide, and diallyl sulphide. Different garlic-derived constituents and their nanoformulations have been tested for their effects against various cancers including skin, ovarian, prostate, gastric, breast, and lung, colorectal, liver, oral, and pancreatic cancer. The objective of this review is to summarize the antitumor activity and associated mechanisms of the organosulfur compounds of garlic in breast carcinoma. Breast cancer continues to have a significant impact on the total number of cancer deaths worldwide. Global measures are required to reduce its growing burden, particularly in developing nations where incidence is increasing quickly and fatality rates are still high. It has been demonstrated that garlic extract, its bioactive compounds, and their use in nanoformulations can prevent breast cancer in all of its stages, including initiation, promotion, and progression. Additionally, these bioactive compounds affect cell signaling for cell cycle arrest and survival along with lipid peroxidation, nitric oxide synthase activity, epidermal growth factor receptor, nuclear factor kappa B (NF-κB), and protein kinase C in breast carcinoma. Hence, this review deciphers the anticancer potential of garlic components and its nanoformulations against several breast cancer thereby projecting it as a potent drug candidate for efficient breast cancer management.

5.
Biology (Basel) ; 12(3)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36979104

RESUMEN

Though there are several advancements and developments in cancer therapy, the treatment remains challenging. In recent years, the antimicrobial peptides (AMPs) from traditional herbs are focused for identifying and developing potential anticancer molecules. In this study, AMPs are identified from Sphaeranthus amaranthoides, a natural medicinal herb widely used as a crucial immune stimulant in Indian medicine. A total of 86 peptide traces were identified using liquid-chromatography-electrospray-ionisation mass spectrometry (LC-ESI-MS). Among them, three peptides were sequenced using the manual de novo sequencing technique. The in-silico prediction revealed that SA923 is a cyclic peptide with C-N terminal interaction of the carbon atom of ASP7 with the nitrogen atom of GLU1 (1ELVFYRD7). Thus, SA923 is presented under the orbitides class of peptides, which lack the disulfide bonds for cyclization. In addition, SA923, steered with the physicochemical properties and support vector machine (SVM) algorithm mentioned for the segment, has the highest in silico anticancer potential. Further, the in vitro cytotoxicity assay revealed the peptide has anti-proliferative activity, and toxicity studies were demonstrated in Danio rerio (zebrafish) embryos.

6.
Biomed Pharmacother ; 160: 114351, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36736284

RESUMEN

Leukemia is a heterogeneous group of hematological malignancies distinguished by differentiation blockage and uncontrolled proliferation of myeloid or lymphoid progenitor cells in the bone marrow (BM) and peripheral blood (PB). There are various types of leukemia in which intensive chemotherapy regimens or hematopoietic stem cell transplantation (HSCT) are now the most common treatments associated with severe side effects and multi-drug resistance in leukemia cells. Therefore, it is crucial to develop novel therapeutic approaches with adequate therapeutic efficacy and selectively eliminate leukemic cells to improve the consequences of leukemia. Medicinal plants have been utilized for ages to treat multiple disorders due to their diverse bioactive compounds. Plant-derived products have been used as therapeutic medication to prevent and treat many types of cancer. Over the last two decades, 50 % of all anticancer drugs approved worldwide are from natural products and their derivatives. Therefore this study aims to review natural products such as polyphenols, alkaloids, terpenoids, nitrogen-containing, and organosulfur compounds as antileukemic agents. Current investigations have identified natural products efficiently destroy leukemia cells through diverse mechanisms of action by inhibiting proliferation, reactive oxygen species production, inducing cell cycle arrest, and apoptosis in both in vitro, in vivo, and clinical studies. Current investigations have identified natural products as suitable promising chemotherapeutic and chemopreventive agents. It played an essential role in drug development and emerged as a possible source of biologically active metabolites for therapeutic interventions, especially in leukemia. DATA AVAILABILITY: Data will be made available on request.


Asunto(s)
Antineoplásicos , Productos Biológicos , Leucemia , Neoplasias , Plantas Medicinales , Humanos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Leucemia/tratamiento farmacológico , Leucemia/prevención & control , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico
7.
Cell Mol Biol (Noisy-le-grand) ; 69(14): 1-8, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38279505

RESUMEN

Plant extracts have been shown to be effective in treating a variety of ailments; however their hydrophilic nature and unique chemical structure have caused significant hurdles due to their low bioavailability. Phytosomes technology is used to improve the absorption of phytoconstituents that are difficult to absorb. Among the leading deaths in the society is malignancy. The aforementioned consumes remained a big issue for modern chemotherapy since it has yet to be treated in an efficient manner. The goal of this study is to outline the most recent research on the potential use of phytosome complexes for cancer therapy, as well as the formulation processes and mechanism of transportation through phytosomes.Nanotechnology has paved the way for cancer therapy by altering key features of medications and their carriers. Novel drug delivery systems are used to transfer antitumor drugs to the particular site via different nanostructures. Among several unique drug delivery systems, phytosomes are a creative way to transfer phytoactive compounds to the site of action, and several phytosomes formulations are now being used in clinical settings. Phytoconstituents' anti-cancer activities are increased by phytosomal formulations.


Asunto(s)
Antineoplásicos , Nanoestructuras , Neoplasias , Humanos , Fitosomas , Sistemas de Liberación de Medicamentos , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Fitoquímicos/uso terapéutico
8.
Chem Biol Interact ; 368: 110230, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36309138

RESUMEN

Diabetes mellitus has become a serious problem associated with health complications, such as metabolism disorders and liver-kidney dysfunction. The inadequacies associated with conventional medicines have led to a determined search for alternative natural therapeutic agents. The present study was conducted to evaluate the hypoglycemic, antilipidemic, and antioxidant effects of EGCG in surviving diabetic mice. Alloxan diabetic mice were treated with EGCG. Their bloods were collected and submitted to various biochemical measurements, including blood glucose, cholesterol, triglycerides, urea, creatinine, and transaminases. Their livers and kidneys were isolated to assess oxidative damage and to perform histological analysis. Both EGCG and insulin treatment of diabetic mice resulted in a significant reduction in fasting blood glucose levels. EGCG supplementation also ameliorated hepatic as well as renal toxicity indices. Moreover, diabetic mice injected with EGCG exhibited significant changes in antioxidant enzyme activities in the liver and kidney. Histological analyses also showed that it exerted an ameliorative action on these organs and efficiently protected the liver-kidney functions of diabetic mice. EGCG was found to bind α-amylase, PTP1B, and α-glucosidase with good affinities ranging from -6.1 to -8.4 kcal/mol. The findings revealed that EGCG administration induced attractive curative effects on diabetic mice, particularly in terms of liver-kidney function. EGCG can, therefore, be considered as a potential strong candidate for future applications to treat and alleviate diabetic burden. Its pharmacokinetics, high affinities, and molecular interactions with the targeted receptors satisfactory explain the in vivo findings.


Asunto(s)
Catequina , Diabetes Mellitus Experimental , Hiperglucemia , Hiperlipidemias , Animales , Ratones , Aloxano/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Glucemia/metabolismo , Hiperlipidemias/tratamiento farmacológico , Catequina/farmacología , Catequina/uso terapéutico , Estrés Oxidativo , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Hígado , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo
9.
Molecules ; 27(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36234927

RESUMEN

Worldwide, since ages and nowadays, traditional medicine is well known, owing to its biodiversity, which immensely contributed to the advancement and development of complementary and alternative medicines. There is a wide range of spices, herbs, and trees known for their medicinal uses. Chilli peppers, a vegetable cum spice crop, are bestowed with natural bioactive compounds, flavonoids, capsaicinoids, phytochemicals, phytonutrients, and pharmacologically active compounds with potential health benefits. Such compounds manifest their functionality over solo-treatment by operating in synergy and consortium. Co-action of these compounds and nutrients make them potentially effective against coagulation, obesity, diabetes, inflammation, dreadful diseases, such as cancer, and microbial diseases, alongside having good anti-oxidants with scavenging ability to free radicals and oxygen. In recent times, capsaicinoids especially capsaicin can ameliorate important viral diseases, such as SARS-CoV-2. In addition, capsaicin provides an ability to chilli peppers to ramify as topical agents in pain-relief and also benefitting man as a potential effective anesthetic agent. Such phytochemicals involved not only make them useful and a much economical substitute to wonder/artificial drugs but can be exploited as obscene drugs for the production of novel stuffs. The responsibility of the TRPV1 receptor in association with capsaicin in mitigating chronic diseases has also been justified in this study. Nonetheless, medicinal studies pertaining to consumption of chilli peppers are limited and demand confirmation of the findings from animal studies. In this artifact, an effort has been made to address in an accessible format the nutritional and biomedical perspectives of chilli pepper, which could precisely upgrade and enrich our pharmaceutical industries towards human well-being.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Capsicum , Animales , Antioxidantes/farmacología , Capsaicina/farmacología , Capsicum/química , Flavonoides , Humanos , Oxígeno , SARS-CoV-2
10.
Cells ; 11(17)2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36078094

RESUMEN

Medical health systems continue to be challenged due to newly emerging COVID-19, and there is an urgent need for alternative approaches for treatment. An increasing number of clinical observations indicate cytokine storms to be associated with COVID-19 severity and also to be a significant cause of death among COVID-19 patients. Cytokine storm involves the extensive proliferative and hyperactive activity of T and macrophage cells and the overproduction of pro-inflammatory cytokines. Stem cells are the type of cell having self-renewal properties and giving rise to differentiated cells. Currently, stem cell therapy is an exciting and promising therapeutic approach that can treat several diseases that were considered incurable in the past. It may be possible to develop novel methods to treat various diseases by identifying stem cells' growth and differentiation factors. Treatment with mesenchymal stem cells (MSCs) in medicine is anticipated to be highly effective. The present review article is organized to put forward the positive arguments and implications in support of mesenchymal stem cell therapy as an alternative therapy to cytokine storms, to combat COVID-19. Using the immunomodulatory potential of the MSCs, it is possible to fight against COVID-19 and counterbalance the cytokine storm.


Asunto(s)
COVID-19 , Síndrome de Liberación de Citoquinas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , COVID-19/terapia , Síndrome de Liberación de Citoquinas/terapia , Citocinas/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo
11.
J Food Biochem ; 46(10): e14368, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35945689

RESUMEN

Liver cancer or hepatocellular carcinoma (HCC) has become a leading cause for cancer burden across the globe, and incidences have tripled since the last two decades. Poor diagnosis of primary liver cancer and limited treatment strategies aggravate the challenges. Researchers globally have shown a steep inclination toward the exploration of plant-based compounds for their nutraceutical and anticancer potential to fit into the role of novel chemotherapeutics. Coleus aromaticus is a well-known culinary herb that earlier has been reported for several medicinal attributes. The current investigation deals with exploring the anticancer potential of ethanolic leaf extract of C. aromaticus (CoL-EtOH) against hepatocellular carcinoma HepG2 cell line. The observations made it evident that CoL-EtOH extract impeded the viability of HepG2 at 400 µg/ml (p < .01). Additionally, the extract also succeeded in escalating ROS production (p < .01) which aided dissipation of mitochondrial membrane potential and disruption of nuclear morphology. CoL-EtOH further activated caspase-8, -9, and -3 which was reaffirmed by increase in apoptosis at 400 µg/ml (p < .01). Moreover, post treatment with CaLEt-OH extract significantly reduced the expression of JAK-1 & STAT-3 genes (p < .01) along with regulated expression of Mcl1, Bcl-2, cyclinD1, p21, and p27 within HepG2 cells. This evidence portrays the promising anticancer potential of CoL-EtOH projecting it as a novel chemotherapeutic agent against HCC. PRACTICAL APPLICATIONS: The herb Coleus aromaticus belonging to Lamiaceae family and Coleus genus is known by various names in different regions of the world and several language-specific vernacular names. The herb has been used in therapeutic and medicinal applications as well as in culinary preparations. Various attributes of the nutritional strength and functional characteristics of the leaves in terms of carotenoids, minerals, phenols, dietary fiber, and antioxidant activity have been reported by several researchers. Carvacrol and thymol are majorly found in the plant, while chlorogenic acid and rosmarinic acid etc. as the phenolic components. The herb has been used in therapeutic and medicinal implications as well as in culinary preparations.


Asunto(s)
Carcinoma Hepatocelular , Coleus , Neoplasias Hepáticas , Antioxidantes , Apoptosis , Carcinoma Hepatocelular/tratamiento farmacológico , Carotenoides , Caspasa 8 , Proliferación Celular , Ácido Clorogénico , Fibras de la Dieta , Etanol , Células Hep G2 , Humanos , Quinasas Janus/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Fenoles , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno , Factores de Transcripción STAT/metabolismo , Timol
12.
Biomed Res Int ; 2022: 1958939, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35924274

RESUMEN

An anthraquinone textile dye, Reactive Blue 4 (RB4), poses environmental health hazards. In this study, remediation of RB4 (30-110 ppm) was carried out by hairy roots (HRs). UV-visible spectroscopy and FTIR analysis showed that the dye undergoes decolourization followed by degradation. In addition, toxicity and safety analyses of the bioremediated dye were performed on Allium cepa and zebrafish embryos, which revealed lesser toxicity of the bioremediated dye as compared to untreated dye. For Allium cepa, the highest concentration, i.e., 110 ppm of the treated dye, showed less chromosomal aberrations with a mitotic index of 8.5 ± 0.5, closer to control. Two-fold decrease in mortality of zebrafish embryos was observed at the highest treated dye concentration indicating toxicity mitigation. A higher level of lipid peroxidation (LPO) was recorded in the zebrafish embryo when exposed to untreated dye, suggesting a possible role of oxidative stress-inducing mortality of embryos. Further, the level of LPO was significantly normalized along with the other antioxidant enzymes in embryos after dye bioremediation. At lower concentrations, mitigated samples displayed similar antioxidant activity comparable to control underlining the fact that the dye at lesser concentration can be more easily degraded than the dye at higher concentration.


Asunto(s)
Colorantes , Helianthus , Animales , Antioxidantes/metabolismo , Colorantes/metabolismo , Helianthus/metabolismo , Cebollas , Raíces de Plantas/metabolismo , Textiles , Triazinas , Pez Cebra/metabolismo
13.
Antibiotics (Basel) ; 11(7)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35884109

RESUMEN

Plants, being the significant and natural source of medication for humankind against several ailments with characteristic substances hidden on them, have been recognized for many centuries. Accessibility of various methodologies for the revelation of therapeutically characteristic items has opened new avenues to redefine plants as the best reservoirs of new structural types. The role of plant metabolites to hinder the development and movement of pathogenic microbes is cherished. Production of extended-spectrum ß-lactamases is an amazing tolerance mechanism that hinders the antibacterial treatment of infections caused by Gram-negative bacteria and is a serious problem for the current antimicrobial compounds. The exploration of the invention from sources of plant metabolites gives sustenance against the concern of the development of resistant pathogens. Essential oils are volatile, natural, complex compounds described by a solid odor and are framed by aromatic plants as secondary metabolites. The bioactive properties of essential oils are commonly controlled by the characteristic compounds present in them. They have been commonly utilized for bactericidal, virucidal, fungicidal, antiparasitic, insecticidal, medicinal, and antioxidant applications. Alkaloids are plant secondary metabolites that have appeared to have strong pharmacological properties. The impact of alkaloids from Callistemon citrinus and Vernonia adoensis leaves on bacterial development and efflux pump activity was assessed on Pseudomonas aeruginosa. Plant-derived chemicals may have direct antibacterial activity and/or indirect antibacterial activity as antibiotic resistance modifying agents, increasing the efficiency of antibiotics when used in combination. The thorough screening of plant-derived bioactive chemicals as resistance-modifying agents, including those that can act synergistically with antibiotics, is a viable method to overcome bacterial resistance. The synergistic assessment studies with the plant extract/essential oil and the antibiotic compounds is essential with a target for achieving a redesigned model with sustainable effects which are appreciably noticeable in specific sites of the plants compared to the entirety of their individual parts.

14.
Cell Mol Biol (Noisy-le-grand) ; 67(4): 56-67, 2022 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-35809302

RESUMEN

During the previous few decades, it has been seen that there is a rapid emergence of pathogens resistant to multiple antibiotics. This has now become a global crisis. Some unexplored or less explored plants also provide some antibacterial, bactericidal and antioxidant properties. The antibacterial, bactericidal effects of extracted essential oils (EEOs) of Thunbergia coccinea, Acacia polyacantha, Polygonum micrpcephallum, Abies spectabilis and Clerodendrum colebrookianum was tested in comparison with standard antibiotics. The methods chosen were disc diffusion and deduction of minimum inhibitory concentration (MIC) by microbroth dilution assays of the EEOs against the bacterial strains.The antioxidant activity was found out utilizing DPPH free radical scavenging assay, MDA, Hydrogen peroxide radical inhibition assay and Superoxide radical inhibition assay (O 2 -). Some commonly used standard antibiotics (metronidazole, amoxicillin, clarithromycin, rifampicin, clindamycin and oxacillin,) were utilized to compare the EEO antibacterial action. Clerodendrum colebrookianum (85.17 ± 3.06 µg MDA/g extract) had a reasonable MDA. Acacia polyacantha in MIC had values of 3.86 ± 0.25 to 6.20 ± 0.16. Polygonum micrpcephallum had excessive H2O2 (48.27 ± 2.4 5%). The antibacterial actions determined by the paper disc­diffusion technique of the EEO extracted from these plants showed that most had some antibacterial actions. Also, it was seen that the bactericidal action of the EEO extracted from E. alba was most potent against S. pyogenes (4.06 ± 0.15). The extract of the plant at varying concentrations (20, 40, 60, 80 and100 mg/mL) demonstrated noteworthy (P< 0.001) anthelmintic action in an effective change when the dose was adjusted. In conclusion, most of the tested plants contain a medicinal value, which can be utilized in the future to supplement artificial medicines and cure emerging diseases that create havoc for mankind.


Asunto(s)
Abies , Acacia , Acanthaceae , Clerodendrum , Fabaceae , Aceites Volátiles , Polygonum , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Peróxido de Hidrógeno , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología
15.
Cell Mol Biol (Noisy-le-grand) ; 67(4): 42-55, 2022 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-35809303

RESUMEN

In view of many complications of diabetes, kidney failure is considered as one of the main complications. The oxidative stress-induced due to persistent hyperglycemic conditions is the major cause of kidney disease. The present study was designed to explore the nephroprotective efficacy of polyherbal (PH) extract in a diabetic model induced by streptozotocin (STZ). STZ (55 mg/kg body weight, intraperitoneal) was injected in overnight fasting rats to develop the diabetic experimental model. Effect on kidney injury was evaluated by investigating biochemical and histological evidences in renal tissue after 56 days of treatment of PH extract. Results showed the high glucose level in STZ treated rats that suggested hyperglycemia persistence along with the successful establishment of nephropathy in diabetic rats with altered renal function, inflammatory cytokines level as well as oxidative and nitrosative stress. Administration of PH extract significantly improved the glycemic condition, glomerular function and proximal reabsorptive markers. Further, elevated pro-inflammatory cytokines levels and disturbed redox status were restored. Moreover, findings were fostered and substantiated by histopathological examinations. Our work strongly proposes that the nephroprotective effect of the PH extract on renal damage could be attributed due to its anti-inflammatory and antioxidant properties. Thus, PH extract could have potential as a pharmaceutical drug for diabetes mellitus (DM). Additional long-term study or clinical trial is required for further investigations.


Asunto(s)
Diabetes Mellitus Experimental , Insuficiencia Renal , Animales , Glucemia/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Riñón/metabolismo , Modelos Teóricos , Estrés Oxidativo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas , Insuficiencia Renal/complicaciones , Estreptozocina/farmacología
16.
Biomed Pharmacother ; 150: 113041, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35658211

RESUMEN

BACKGROUND: Lung diseases including chronic obstructive pulmonary disease (COPD), infections like influenza, acute respiratory distress syndrome (ARDS), asthma and pneumonia lung cancer (LC) are common causes of sickness and death worldwide due to their remoteness, cold and harsh climatic conditions, and inaccessible health care facilities. PURPOSE: Many drugs have already been proposed for the treatment of lung diseases. Few of them are in clinical trials and have the potential to cure infectious diseases. Plant extracts or herbal products have been extensively used as Traditional Chinese Medicine (TCM) and Indian Ayurveda. Moreover, it has been involved in the inhibition of certain genes/protiens effects to promote regulation of signaling pathways. Natural remedies have been scientifically proven with remarkable bioactivities and are considered a cheap and safe source for lung disease. METHODS: This comprehensive review highlighted the literature about traditional plants and their metabolites with their applications for the treatment of lung diseases through experimental models in humans. Natural drugs information and mode of mechanism have been studied through the literature retrieved by Google Scholar, ScienceDirect, SciFinder, Scopus and Medline PubMed resources against lung diseases. RESULTS: In vitro, in vivo and computational studies have been explained for natural metabolites derived from plants (like flavonoids, alkaloids, and terpenoids) against different types of lung diseases. Probiotics have also been biologically active therapeutics against cancer, anti-inflammation, antiplatelet, antiviral, and antioxidants associated with lung diseases. CONCLUSION: The results of the mentioned natural metabolites repurposed for different lung diseases especially for SARS-CoV-2 should be evaluated more by advance computational applications, experimental models in the biological system, also need to be validated by clinical trials so that we may be able to retrieve potential drugs for most challenging lung diseases especially SARS-CoV-2.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Enfermedades Pulmonares , Suplementos Dietéticos , Humanos , Enfermedades Pulmonares/tratamiento farmacológico , Medicina Tradicional China , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fitoterapia , Extractos Vegetales/farmacología , SARS-CoV-2
17.
Calcif Tissue Int ; 110(4): 475-488, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34988595

RESUMEN

Breast cancer bone metastases (BCBM) result in serious skeletal morbidity. Although there have been important advances in cancer treatment methods such as surgery and chemotherapy, the complementary treatments, such as α-tocopherol acetate (ATA), still remain of key role via complementary and/or synergistic effects. The aim of this work was to study immune response in a rat model of BCBM due to Walker 256/B cells inoculation and the effect of ATA alone. Compared to the control group (CTRL), rat injected with Walker 256/B cells (5 × 104) in the medullar cavity (W256 group) showed osteolytic damages with marked tumor osteolysis of both cancellous and trabecular bone as assessed by X-ray radiology, micro-computed tomography, and histology. Rats inoculated with Walker 256/B cells and treated with ATA (45 mg/kg BW, W256ATA group) presented marked less tumor osteolysis, less disturbance of Tb.Th and Tb.Sp associated with conversion of rods into plates, and increased structure model index and trabecular pattern factor (Tb.Pf). Elsewhere, 3D frequency distributions of Tb.Th and Tb.Sp were highly disturbed in metastatic W256 rats. Overexpression of some genes commonly associated with cancer and metastatic proliferation: COX-2, TNF-α, and pro-inflammatory interleukins 1 and 6 was outlined. ATA alleviated most of the Walker 256/B cells-induced microarchitectural changes in the target parameters without turning back to normal levels. Likewise, it alleviates the BCSM-induced overexpression of COX-2, TNF-α, IL-1, and IL-6. In silico approach showed that ATA bound these proteins with high affinities, which satisfactory explain its beneficial effects. In conclusion, BCBM is associated with bone microarchitectural disorders and an immune response characterized by an overexpression of some key role genes in cancer proliferation and invasion. ATA exerted favorable effects on trabecular bone distribution and morphology, which may involve the COX-2, TNF-α, and ILs pathways.


Asunto(s)
Neoplasias de la Mama , Osteólisis , alfa-Tocoferol , Animales , Neoplasias Óseas/secundario , Neoplasias de la Mama/patología , Ciclooxigenasa 2 , Suplementos Dietéticos , Osteólisis/tratamiento farmacológico , Osteólisis/patología , Ratas , Factor de Necrosis Tumoral alfa , Microtomografía por Rayos X , alfa-Tocoferol/farmacología
18.
Cell Mol Biol (Noisy-le-grand) ; 68(11): 20-27, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37114313

RESUMEN

Herbal medications or formulations are regularly recommended by clinicians as a potential therapeutic method for a variety of human ailments, including cancer. Although Prosopis juliflora extracts have shown promise in anticancer activity, the effects on prostate cancer and the accompanying molecular mechanisms of action are still unexplored. This research aims at the antioxidant, antiproliferative, and apoptosis-inducing properties of Prosopis juliflora methanolic leaves extract in human prostate cancer LNCaP cells. The antioxidant ability of the extract was assessed using the DPPH (2, 2-diphenyl-2-picrylhydrazyl) and two additional reducing power tests. Antitumor activity was determined using MTT cell viability tests and LDH cytotoxicity assays. The probable mechanism of apoptotic cell death was further investigated utilizing a caspase-3 activation assay and qRT-PCR mRNA expression investigations of apoptotic-related genes. The results revealed that the methanol extract of Prosopis juliflora leaves contains alkaloids, flavonoids, tannins, glycosides, and phenols, all of which have substantial antioxidant activity. In vitro anticancer tests demonstrated that extract therapy resulted in a dose-dependent reduction in cell viability of LNCaP prostate cancer cells, but normal HaCaT cells showed no cytotoxic effects. Furthermore, plant extract therapy increased caspase-3 activation and mRNA expression of apoptotic-related genes, suggesting that this could be a mechanism for cancer cell growth suppression. The significance of Prosopis juliflora as a source of new antioxidant compounds against prostate cancer was emphasized in the current study. However, more study is needed to demonstrate the efficacy of Prosopis juliflora leaves extract in the treatment of prostate cancer.


Asunto(s)
Prosopis , Neoplasias de la Próstata , Masculino , Humanos , Antioxidantes/química , Prosopis/química , Caspasa 3/genética , Caspasa 3/análisis , Extractos Vegetales/química , Neoplasias de la Próstata/tratamiento farmacológico , Hojas de la Planta/química , ARN Mensajero
19.
Plants (Basel) ; 10(11)2021 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-34834641

RESUMEN

Rauwolfia serpentina (R. serpentina), belonging to the family Apocynaceae, is a renowned medicinal herb for its different pharmacological activities such as antibacterial, antifungal, anti-inflammatory, and antiproliferative characteristics. This study has done a comparative assessment of the antibacterial, antioxidant, and anti-cancer activity of R. serpentina aqueous leaf extract (RSALE) with encapsulated gold nanoparticles (R-AuNPs). The R-AuNPs are prepared so that they are significant in size, monodispersed, and extremely stable. Their characterization was done by numerous parameters, including UV-visible spectroscopy (528 nm), transmission electron microscopy (~17 d. nm), dynamic light scattering (~68 d. nm), and zeta-potential (~-17 mV). Subsequently, a potent antibacterial activity was depicted via RSALE and R-AuNPs when examined by disc diffusion against various Gram-positive and Gram-negative bacterial strains. The obtained zones of inhibition of RSALE (100 mg/mL) were 34 ± 0.1, 35 ± 0.1, 28.4 ± 0.01, and 18 ± 0.01, although those of R-AuNPs (15 mg/mL) were 24.4 ± 0.12, 22 ± 0.07, 20 ± 0.16, and 17 ± 0.3 against Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Bacillus subtilis (MTCC 8114), and Streptococcus pyogenes (ATCC 19615), respectively. However, no zone of inhibition was obtained when tested against Proteus vulgaris (MTCC 1771). Furthermore, the obtained MIC values for Staphylococcus aureus were 0.91, 0.61, and 1.15 mg/mL; for Escherichia coli, 0.79, 0.36, and 1.02 mg/mL; for Bacillus subtilis 0.42, 0.27, and 0.474 mg/mL; and for Streptococcus pyogenes, 7.67, 3.86, and 8.5 mg/mL of pure RSALE, R-AuNPs, and Amoxicillin (control), respectively, incorporating that R-AuNPs have been shown to have a 1.4-fold, 2.1-fold, 1.5-fold, and 1.9-fold enhanced antibacterial activity in contrast to pure RSALE tested against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Streptococcus pyogenes, and Proteus vulgaris, respectively. Additionally, an enhanced antioxidant potential was detected in R-AuNPs compared to RSALE evaluated by the 2,2-Diphenyl-1-Picryl Hydrazyl Radical Scavenging (DPPH) Ferric reducing antioxidant power (FRAP) assay. The determined IC 50 values of RSALE and R-AuNPs were 0.131 ± 0.05 and 0.184 ± 0.02 mg/mL, and 0.110 ± 0.1 and 0.106 ± 0.24 mg/mL via the FRAP and DPPH assays, respectively. In addition, the anti-cancer activity against the human cervical cancer (Hela) cell line was evaluated, and the MTT assay results revealed that R-AuNPs (IC50 88.3 µg/mL) had an enhanced anti-cancer potential in contrast to RSALE (171.5 µg/mL). Subsequently, the findings of this study indicated that R. serpentina leaves and their nanoformulation can be used as a potent source for the treatment of the above-mentioned complications and can be used as a possible agent for novel target-based therapies for the management of different ailments.

20.
J Food Biochem ; 45(12): e14010, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34796513

RESUMEN

Globally, cancer is one of the deadliest diseases, estimated to cause 9.9 million deaths in 2020. Conventional cancer treatments commonly involve mono-chemotherapy or a combination of radiotherapy and mono-chemotherapy. However, the negative side effects of these approaches have been extensively reported and have prompted the search for new therapeutic drugs. Over the past few years, numerous dietary agents, medicinal plants, and their phytochemicals gained considerable therapeutic importance because of their anticancer, antiviral, anti-inflammatory, and antioxidant activities. Recent years have shown that essential oils possess therapeutic effects against numerous cancers. They are primarily used due to their lesser side effects than standard chemotherapeutic drugs. Carvacrol (CRV) is a phenolic monoterpenoid found in essential oils of oregano, thyme, pepperwort, wild bergamot, and other plants. Numerous anticancer reports of CRV substantiated that the main mechanistic action of CRV involves reduction in the viability of cancer cells and induction of apoptosis via both intrinsic and extrinsic pathways. CRV also obstructs the migration and invasion of cells leading to the suppressed proliferation rate. Furthermore, CRV mediates augmented ROS generation resulting in DNA damage and also halts the progression of cell cycle. Treatment of CRV modulates the expression of apoptotic proteins (Bax, Bad) and molecular targets of various signaling pathways (PI3K/AKT/mTOR, MAPKs, and Notch) in multiple solid carcinomas. Hence, this review aimed to acquire and disseminate the knowledge of chemopreventive and anticancer effects of CRV and the mechanisms of action already described for the compound against numerous cancers, including solid carcinomas, to guide future research. PRACTICAL APPLICATIONS: Development and formulation of phytocompound based anticancer drug agents to counteract the aftereffects of chemotherapeutic drugs is a propitious approach. CRV is a monoterpenoid consisting of a phenolic group obtained from the essential oils of oregano and thyme. These plants are being used as food flavoring spice and as fragrance ingredient in various cosmetic formulations. For the use of CRV as an efficient chemopreventive agent, different therapeutic interactions of CRV along with its targeted pathways and molecules, involved in the regulation of onset and progression of various types of solid carcinomas, need to be studied and explored thoroughly.


Asunto(s)
Carcinoma , Fosfatidilinositol 3-Quinasas , Cimenos , Humanos , Monoterpenos/farmacología , Monoterpenos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA