RESUMEN
Background: Medicinal plants are a source of phytochemicals and they are used for the treatment of several oxidative stress-related or other diseases for their effectiveness, low toxicity and easy availability. Five traditionally used and less characterized herbaceous weeds of West Bengal, India, namely, Heliotropium indicum, Tridax procumbens, Cleome rutidosperma, Commelina benghalensis and Euphorbia hirta, were investigated for the current research study. Methods: Aqueous and 70% ethanolic extracts of the leaves were analyzed for estimation of essential phytochemicals and to evaluate their in vitro antioxidant status, medicinal properties and cytotoxic effects. To the best of our knowledge, several assays and comparative evaluations using these herbs are reported for the first time. For quantitative study, UV-vis spectrophotometry and high-performance liquid chromatography with diode array detector HPLC-DAD techniques were used. Antibacterial properties were investigated using the Kirby-Bauer disc diffusion method. For in vitro anti-lithiatic study, a titration method was used. The cell viability assay was done using peripheral blood mononuclear cells. Results: The aqueous extract exhibits higher content of polyphenols, flavonoids, tannins and inhibition percentage values for free radical scavenging assays, whereas the 70% ethanolic extract exhibits higher content of alkaloids and cardiac glycosides. HPLC-DAD analysis of 70% ethanolic extracts led us to identify 10 predominant phenolic constituents. Euphorbia hirta extracts showed minimum cytotoxicity (cell death ~2.5% and 4% in water and 70% ethanolic extract, respectively ), whereas Cleome rutidosperma and Tridax procumbens' 70% ethanolic extracts showed higher cell death (~13% and 28%, respectively), compared with the control (cell death ~10-12%). Conclusions: The study concluded that of all the medicinal weeds selected for the current study, Euphorbia hirta possesses the highest amount of bioactive compounds and hence exhibits the highest in vitro antioxidant activity and promising in vitro medicinal properties.
Asunto(s)
Antioxidantes/farmacología , Extractos Vegetales/farmacología , Malezas/química , Asteraceae/química , Células Cultivadas , Cleome/química , Commelina/química , Euphorbia/química , Heliotropium/química , Humanos , India , Leucocitos Mononucleares/efectos de los fármacos , Fitoquímicos/farmacologíaRESUMEN
BACKGROUND: Diabetic nephropathy (DN), an end-stage renal disorder, has posed a menace to humankind globally, because of its complex nature and poorly understandable intricate mechanism. In recent times, functional foods as potential health benefits have been gaining attention of consumers and researchers alike. Rich in antioxidants, the peel and seed of pomegranate have previously demonstrated protection against oxidative-stress-related diseases, including cardiovascular disorders, diabetes, and cancer. PURPOSE: This study was designed to investigate the ameliorative role of pomegranate peel extract-stabilized gold nanoparticle (PPE-AuNP) on streptozotocin (STZ)-induced DN in an experimental murine model. METHODS: Following the reduction methods, AuNP was prepared using the pomegranate peel ellagitannins and characterized by particle size, physical appearance, and morphological architecture. Modulatory potential of PPE-AuNP was examined through the plethora of biochemical and high throughput techniques, flow cytometry, immunoblotting, and immunofluorescence. RESULTS: The animals treated with PPE-AuNP markedly reduced the fasting blood glucose, renal toxicity indices, and serum TC and TG in a hyperglycemic condition. As evident from an increased level of plasma insulin level, PPE-AuNP normalized the STZ-induced pancreatic ß-cell dysfunction. The STZ-mediated suppression of endogenous antioxidant response was restored by the PPE-AuNP treatment, which reduced the generation of LPO as well as iROS. Furthermore, the hyperglycemia-mediated augmentation of protein glycation, followed by the NOX4/p-47phox activation, diminished with the application of PPE-AuNP. The histological and immunohistochemical findings showed the protective efficacy of PPE-AuNP in reducing STZ-induced glomerular sclerosis and renal fibrosis. In addition, it reduced proinflammatory burden through the modulation of the MAPK/NF-κB/STAT3/cytokine axis. Simultaneously, PI3K/AKT-guided Nrf2 activation was evident upon the PPE-AuNP application, which enhanced the antioxidant response and maintained hyperglycemic homeostasis. CONCLUSION: The findings indicate that the use of PPE-AuNPs might act as an economic therapeutic remedy for alleviating DN.