Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
2.
J Ethnopharmacol ; 317: 116804, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37352945

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Malaria is a leading cause of death in many developing countries, especially in sub-Saharan Africa. Nigeria is endowed with an abundance of medicinal plants, many of which are used to treat malaria. Celtis durandii Engl. is one such plant used as a traditional antimalarial remedy in southeast Nigeria. However, its antiplasmodial potential is poorly explored. AIM OF THE STUDY: The study aimed at identifying the antiplasmodial components of C. durandii root extract through antiplasmodial activity-guided fractionation. MATERIALS AND METHODS: Dichloromethane/methanol mixture extract (1:1 v/v) of C. durandii root was prepared and partitioned against water to obtain the organic phase, which was further separated by column chromatography into nine (C1 - C9) fractions. The antiplasmodial activity was evaluated by in vitro screening of the different fractions against drug-sensitive and drug-resistant Plasmodium falciparum strains. Further purification of the active column fractions resulted in a potent anti-Plasmodial compound that was subsequently investigated for its effect on ß-hematin formation. Additionally, the isolated compound was characterized and identified as marmesin using mass spectrometry and nuclear magnetic resonance spectroscopy. RESULTS: Celtis durandii root extract exhibited promising antiplasmodial activity {IC50 (µg/ml) 5.92, 6.04, and 6.92} against PfW2mef, PfINDO, and Pf3D7 respectively. Pooled fractions with good antiplasmodial activity {IC50 (µg/ml) Pf3D7: 3.99; PfINDO: 2.24} and selectivity for the parasites (SI: 21) yielded a compound that was fourteen-fold potent in antiplasmodial activity against Pf3D7(IC50: 0.28 µg/ml). It also inhibited ß-hematin formation with an IC50 = 150 µM. Further studies using spectral data, literature, and chemical databases identified the purified compound as marmesin. CONCLUSION: This work has demonstrated that Celtis durandii root extract has good antiplasmodial activity against drug-sensitive and drug-resistant P. falciparum. The inhibition of ß-hematin formation by marmesin accounts in part for this activity.


Asunto(s)
Antimaláricos , Malaria , Humanos , Extractos Vegetales/química , Malaria/tratamiento farmacológico , Plasmodium falciparum
3.
J Ethnopharmacol ; 310: 116389, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-36924862

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Fritillaria cirrhosa D.Don (Syn: Fritillaria roylei Hook.) (Hindi name: Kshirakakoli) is a critically endangered Himalayan medicinal plant, well documented in Ayurveda for its therapeutic uses against various disorders such as jvara (fever), kasa (respiratory tract disease) etc. Its bulbs are also used as Szechuan-Pei-Mu for their antipyretic properties in the traditional Chinese medicine. However, despite its ethnomedicinal usage, the therapeutic use of F. cirrhosa bulbs for jvara (fever) related conditions such as malaria has remained unexplored. Hence in the context of increasing global concerns about drug-resistant malaria, it is important to investigate the antiplasmodial activity of F. cirrhosa bulbs for novel antimalarial agents. AIM OF THE STUDY: To investigate the antiplasmodial effects of the extracts/fractions of F. cirrhosa bulbs by the biochemometric approach and to rationalize its ethnopharmacological usage for jvara (fever) related conditions such as malaria. MATERIAL AND METHODS: This study involves the UHPLC-MS-based plant material selection, preparation, quantification, and assessment of F. cirrhosa bulb extracts against CQ-sensitive Pf 3D7 & CQ-resistant Pf INDO strains. Further, UPLC-IM-Q-TOF-MS-based biochemometric approach has been applied for the identification of marker compounds responsible for the observed antiplasmodial effects. The identified marker compounds were also assessed for their in silico ADMET properties and binding efficacy with the drug transporter Pf CRT. RESULTS: Different F. cirrhosa bulb extracts/fractions showed promising antiplasmodial activity with IC50 values 2.71-19.77 µg/mL for CQ-resistant Pf INDO strain and 1.76-21.52 µg/mL for CQ-sensitive Pf 3D7 strain. UPLC-IM-Q-TOF-MS/MS-based biochemometric analysis revealed four marker compounds i.e., peimine (m/z 432.3448), peimisine (m/z 428.3504), puqiedinone (m/z 414.3379), and puqiedine (m/z 416.3509) responsible for the observed antiplasmodial activity. The identified marker compounds showed excellent binding efficacy with Pf CRT and suitable drug-like properties in silico. CONCLUSIONS: The study demonstrated promising antiplasmodial activity of the chloroform and alkaloid enriched fractions of F. cirrhosa bulbs and further identified the four marker compounds responsible for the promising antiplasmodial activity. These marker compounds i.e., peimine, peimisine, puqiedinone and puqiedine were identified by the biochemometric analysis as the putative antiplasmodial constituents of the F. cirrhosa bulbs. Further, in silico studies indicated the good binding affinity of the marker compounds with Pf CRT along with suitable ADMET properties. Overall, the study elucidates the antiplasmodial activity of F. cirrhosa bulbs from the western Himalayan region and provides nascent scientific evidence for their ethnopharmacological usage in jvara (fever) related conditions such as malaria.


Asunto(s)
Antimaláricos , Fritillaria , Plantas Medicinales , Fritillaria/química , Antimaláricos/farmacología , Espectrometría de Masas en Tándem , Plantas Medicinales/química , Extractos Vegetales/farmacología
4.
J Ethnopharmacol ; 301: 115807, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36223842

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Malaria remains one of the most important pathogenic infectious diseases. Although Africa suffers the greatest brunt, a sizeable proportion of her population still relies on herbal medicines for reasons of cost as well as the belief etched in the minds of consumers that herbal medicines are safer and more efficacious than Modern medicines. Agbo-iba; a concoction of two or more than two plants is commonly used for the management of malaria in Nigeria. AIM OF THE STUDY: This study assessed the safety and efficacy of a hepta-herbal Agbo-iba (HHA) antimalarial decoction used for the management of malaria in Benin city, Nigeria. MATERIALS AND METHODS: Assessment was done against malaria parasite in culture as well as in vivo in pre-clinical murine model of malaria. RESULTS: HHA (IC50Pf3D7 50 µg/ml) was moderately potent and only one of its constituent plants Annickia affinis (IC50Pf3D7 1.49 µg/ml) was far more potent, while all others were moderately active to inactive against the parasite in vitro. HHA showed good selectivity in vitro and was safe at 2 g/kg in mice. However, at 100 mg/kg oral dose, while HHA suppressed parasite growth by 56.76%, the suppression caused by A.affinis was only 32.46% in mice malaria suggesting the existence of synergistic partner(s) in the herbal formula. LCMS revealed the presence of quaternary protoberberine alkaloids (QPAs) in A.affinis and HHA. CONCLUSIONS: Although QPAs have strong in vitro antiplasmodial activity, their in vivo antimalarial activity is undermined by being substrates of Permeability glycoprotein (Pgp) efflux pump. Our study suggests that inhibitor(s) of Pgp in HHA could improve the bioavailability of QPAs in mice fed the herbal combo. Further, molecules from other HHA constituent plants may also contribute to the better potency observed for the polyherbal in vivo. These possibilities were validated by the curative antimalarial study at 100 mg/kg, where A.affinis was inactive but the HHA suppressed parasite growth by 44.45%.


Asunto(s)
Antimaláricos , Malaria , Plantas Medicinales , Femenino , Ratones , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Antimaláricos/química , Nigeria , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Malaria/tratamiento farmacológico , Malaria/parasitología , Plantas Medicinales/química , Plasmodium falciparum , Plasmodium berghei
5.
Heliyon ; 8(7): e09916, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35856000

RESUMEN

Medicinal plants are often used to treat malaria in different parts of Nigeria and exploiting these can unravel new therapeutic leads. This study evaluated the antiplasmodial potential of selected plants used to treat malaria in Nsukka, Enugu state, Nigeria. Leaves of three different plants (Cucurbita pepo, Hibiscus rosa-sinensis and Pennisetum purpureum) were collected for screening and two extracts viz., 70%v/v ethanol and dichloromethane/methanol (1:1 v/v), were prepared for each. An acute toxicity test was done in mice and cytotoxicity was assessed using human hepatoma cell line (HUH). The extracts were screened against chloroquine-sensitive P. falciparum (Pf3D7) in vitro, and chloroquine-resistant P. berghei ANKA in vivo using a 4 day-suppressive test in mice. Cucurbita pepo ethanol extract was further tested for hemolytic effect on human erythrocytes and in established infection in mice. Parameters assessed were post-treatment parasitemia, hematological indices, organ (brain, kidney, liver, and spleen) weights, and survival. The extracts were non-cytotoxic up to a test dose of 100 µg/ml and 2000 mg/kg fed - mice did not show acute or delayed toxicity. Cucurbita pepo ethanol extract (CpE) displayed excellent in vitro antiplasmodial activity with IC50 of 3.05 µg/ml. At an oral dose of 500 mg/kg, mice were observed to display significant (p < 0.01) ∼51% suppression of parasitemia. The extract did not produce any significant hemolytic effect up to a test concentration of 1 mg/ml. In established infection, a dose of 300 mg/kg significantly (p < 0.01) protected mice from anemia caused by low hematocrit. The extract produced significant (p < 0.05) elevation in red blood cells and platelet counts, and an increase in hemoglobin was evident at 100 and 300 mg/kg. Further, CpE in a dose-dependent manner, reversed liver and spleen weight increase seen in untreated, infected mice. These findings show C. pepo as a potential candidate for further studies to identify its bioactive principle(s) and possible mechanism(s) of antimalarial action.

6.
J Ethnopharmacol ; 287: 114931, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-34942322

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Aconitum heterophyllum Wall. ex Royle is a traditionally important medicinal plant having numerous therapeutic actions as documented in Ayurveda. This plant is traditionally known for combating worm infestation, fever, respiratory tract disease, vomiting, diarrhoea, diabetes, skin disorders, anaemia, and joint disorders. Further, it has been used alone and in combination with other plants to prepare various anti-malarial formulations. However, there is no report on the assessment of its anti-plasmodial activity, and the metabolite(s) responsible for this activity. AIM OF THE STUDY: The main aim of this study was to conduct phytochemical investigation of A. heterophyllum roots for the preparation of extract, fractions, and isolation of pure molecules to identify active fractions/molecules responsible for the anti-plasmodial activity, and development of UHPLC-DAD based analytical method which can be used for the quantification of marker compounds in the extracts and fractions. MATERIALS AND METHODS: Hydroalcoholic extract (1:1 v/v) and fractions (n-hexane, chloroform, ethyl acetate, n-butanol, and water) were prepared from the dried powdered roots of A. heterophyllum. Fractions were further subjected to silica gel column chromatography to isolate pure specialized secondary metabolites from this plant. All extracts, fractions, and pure molecules were evaluated against the chloroquine resistant Pf INDO and chloroquine sensitive Pf3D7 strains in culture for calculating their IC50 values. UHPLC-DAD based analytical method was also developed for the first time for the quantification of marker compounds and quality assessment of this commercially important Himalayan medicinal plant. RESULTS: Phytochemical investigation of A. heterophyllum root led to the isolation of six specialized metabolites viz. 2-O-cinnamoyl hetisine (1), atisinium (2), 4-oxabicyclo [3.2.2] nona-1(7),5,8-triene (3), atisinium cinnamate (4), aconitic acid (5), and atisinium formate (6). Compound 1 is a new hetisine type diterpenoid alkaloid, compounds 4 and 6 are new counter ionic forms observed with atisinium ion, and compound 3 is being reported for the first time from this genus. Chloroform fraction was found to be the most active with IC50 (µg/mL) 1.01 (Pf INDO) and 1.32 (Pf3D7). The molecule 2-O-cinnamoyl hetisine (1), a new diterpenoid alkaloid isolated from chloroform fraction, showed promising antiplasmodial activities with IC50 (µM) 1.92 (Pf INDO) and 10.8 (Pf 3D7). The activity of chloroform fraction was further validated by the developed UHPLC-DAD based method as the quantity of 2-O-cinnamoyl hetisine (1) was higher in the chloroform fraction (≅200 mg/g) than in all other fractions (<7 mg/g). Atisinium (2) and 2-O-cinnamoyl hetisine (1) were found to be the main marker compounds of this plant based on quantity and antiplasmodial activity, respectively. CONCLUSION: This study provides the scientific rationale for the traditional use of this plant in treating malaria. Further, this study revealed that the anti-malarial potential of this plant might be due to the presence of diterpenoid alkaloids.


Asunto(s)
Aconitum/química , Alcaloides/farmacología , Diterpenos/farmacología , Plasmodium falciparum/efectos de los fármacos , Alcaloides/administración & dosificación , Alcaloides/aislamiento & purificación , Antimaláricos/administración & dosificación , Antimaláricos/aislamiento & purificación , Antimaláricos/farmacología , Cloroquina/farmacología , Cromatografía Líquida de Alta Presión , Diterpenos/administración & dosificación , Diterpenos/aislamiento & purificación , Concentración 50 Inhibidora , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Raíces de Plantas
7.
J Ethnopharmacol ; 285: 114909, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34902534

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Terminalia mantaly (H. Perrier) and Terminalia superba (Engl. & Diels) are sources of treatment for various diseases, including malaria and/or related symptoms in parts of Southwestern Cameroon. However, there is limited information on the extent of the antiplasmodial potential of their extracts. AIM OF THE STUDY: The present study was designed to investigate the antiplasmodial potential of chromatographic sub fractions (SFs) from promising fractions of Terminalia mantaly (Tm) [TmsbwChl, the chloroform fraction from water extract of Tm, IC50 (µg/mL) PfINDO: 0.56, Pf3D7: 1.12; SI > 357 (HEK/PfINDO) & 178 (HEK/Pf3D7)] and Terminalia superba (Ts) [TsrmEA, the ethyl acetate fraction from methanolic extract of Ts, IC50 (µg/mL) PfINDO: 1.82, Pf3D7: 1.65; SI > 109 (HEK/PfINDO) & 121 (HEK/Pf3D7)] obtained from previous studies. The SFs were tested against Plasmodium falciparum 3D7 (Pf3D7-chloroquine sensitive) and INDO (PfINDO-chloroquine resistant) strains in culture. Also, the phytochemical profile of potent SFs was determined and finally, the inhibition of the asexual blood stages of Plasmodium falciparum by the SFs with the highest promise was assessed. MATERIAL AND METHODS: Selected SFs were submitted to a second bio-guided fractionation using silica gel column chromatography. The partial phytochemical composition of potent antiplasmodial SFs was determined using gas chromatography coupled to mass spectrometry (GC-MS). The SYBR Green I-based fluorescence microtiter plate assay was used to monitor the growth of Plasmodium falciparum parasites in culture in the presence or absence of extracts. Microscopy and flow cytometry counting was used to assess the Plasmodium falciparum stage-specific inhibition and post-drug exposure growth suppression by highly potent extracts. RESULTS: Twenty-one of the 39 SFs afforded from TmsbwChl showed activity (IC50: 0.29-4.74 µg/mL) against both Pf3D7 and PfINDO strains. Of note, eight SFs namely, Tm25, Tm28-30, Tm34-36 and Tm38, exerted highly potent antiplasmodial activity (IC50 < 1 µg/mL) with IC50PfINDO: 0.41-0.84 µg/mL and IC50Pf3D7: 0.29-0.68 µg/mL. They also displayed very high selectivity (50 < SIPfINDO, SIPf3D7 > 344) on the two Plasmodial strains. On the other hand, 7 SFs (SFs Ts03, Ts04, Ts06, Ts09, Ts10, Ts12 and Ts13) from TsrmEA showed promising inhibitory potential against both parasite strains (IC50: 2.01-5.14 µg/mL). Sub fraction Tm36 (IC50PfINDO: 0.41 µg/mL, SIPfINDO > 243; IC50Pf3D7: 0.29 µg/mL, SIPf3D7 > 344) showed the highest promise. The GC-MS analysis of the 8 selected SFs led to the identification of 99 phytometabolites, with D-limonene (2), benzaldehyde (12), carvone (13), caryophyllene (35), hexadecanoic acid, methyl ester (74) and 9-octadecenoic acid, methyl ester (82) being the main constituents. Sub fractions Tm28, Tm29, Tm30, Tm36 and Tm38 inhibited all the three intraerythrocytic stages of P. falciparum, with strong potency against ring stage development, merozoite egress and invasion processes. CONCLUSIONS: This study has identified highly potent antiplasmodial SFs from Terminalia mantaly with significant activity on the intraerythrocytic development of Plasmodium falciparum. These SFs qualify as promising sources of novel antiplasmodial lead compounds. Further purification and characterization studies are expected to unravel molecular targets in rings and merozoites.


Asunto(s)
Antimaláricos/farmacología , Merozoítos/efectos de los fármacos , Extractos Vegetales/farmacología , Plasmodium falciparum/efectos de los fármacos , Terminalia/química , Antimaláricos/química , Células HEK293 , Humanos , Fitoterapia , Extractos Vegetales/química
8.
J Pharm Anal ; 11(5): 541-554, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34765267

RESUMEN

Having faced increased clinical treatment failures with dihydroartemisinin-piperaquine (DHA-PPQ), Cambodia swapped the first line artemisinin-based combination therapy (ACT) from DHA-PPQ to artesunate-mefloquine given that parasites resistant to piperaquine are susceptible to mefloquine. However, triple mutants have now emerged, suggesting that drug rotations may not be adequate to keep resistance at bay. There is, therefore, an urgent need for alternative treatment strategies to tackle resistance and prevent its spread. A proper understanding of all contributors to artemisinin resistance may help us identify novel strategies to keep artemisinins effective until new drugs become available for their replacement. This review highlights the role of the key players in artemisinin resistance, the current strategies to deal with it and suggests ways of protecting future antimalarial drugs from bowing to resistance as their predecessors did.

9.
J Ethnopharmacol ; 269: 113672, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33301916

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Terminalia catappa L. (West Indian-Almond) is a medicinal plant used in traditional medicine for the treatment of infectious diseases. Moreover, various organic extracts prepared from this plant have been reported to exhibit antiplasmodial activity. AIM OF THE STUDY: The need for new antimalarials is still an urgency driven by the alarmingly high burden of malaria in endemic regions, with multitude of people dying annually. We have previously identified an endophytic fungus Aspergillus niger 58 harboured by T. catappa as having promising specialized secondary metabolites against the malaria parasites. In the present study, we report the antiplasmodial activity-guided chromatographic isolation of some metabolites secreted by this endophytic fungus. MATERIALS AND METHODS: The SYBR Green I-based fluorescence microtiter plate assay was used to monitor the growth of Plasmodium falciparum parasites in culture in the presence and absence of inhibitors and results were validated by microscopic analysis of Giemsa-stained culture smears. Giemsa-stain microscopy was also used to study the cell cycle stage-specific action of selected fractions. RESULTS: The results revealed that the multidimensional purification of the crude extract (IC50: 4.03 µg/mL) provided RPHPLC F17 (IC50: 0.09 µg/mL) and RPHPLC F18 (IC50: 0.1 µg/mL) with activity against P. falciparum 3D7 (Pf3D7) strain. Moreover, both fractions at IC99 (0.5 µg/mL) exhibited multi-stages action by targeting all the three stages of the life cycle of blood-stage Pf3D7. Two compounds, flavasperone (1) and aurasperone A (2) were isolated, of which aurasperone A exhibited good potency against Pf3D7 (IC50: 4.17 µM) and P. falciparum INDO (PfINDO) (IC50: 3.08 µM). CONCLUSION: Our study adds credence to the notion that endophytic extracts are potential storehouses for potent specialized secondary metabolites that can be harnessed to fight the malaria parasite and reduce the burden of this disease worldwide. An endophyte that can be cultured in laboratory with ability to secrete promising metabolites of medicinal value holds the promise of conserving Nature from the threat of annihilation of flora for medicinal purposes.


Asunto(s)
Antimaláricos/metabolismo , Antimaláricos/farmacología , Aspergillus niger/metabolismo , Plasmodium falciparum/efectos de los fármacos , Terminalia/metabolismo , Antimaláricos/aislamiento & purificación , Aspergillus niger/aislamiento & purificación , Células HEK293 , Humanos , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Plasmodium falciparum/fisiología
10.
J Ethnopharmacol ; 262: 113185, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32726676

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cissampelos pareira is used traditionally in India as a remedy for the treatment of various diseases including malaria but the active ingredients responsible for antiplasmodial activity have not yet been investigated. AIM OF THE STUDY: The identification and quantification of compounds responsible for antiplasmodial activity in different parts (leaf, stem and root) of C. pareira is the target of current study. MATERIAL AND METHODS: The hydro ethanolic parent extracts of different parts of C. pareira and fractions prepared from these extracts were evaluated against Pf3D7 (chloroquine sensitive) and PfINDO (chloroquine resistance) strains in culture to quantify the IC50 for extracts and fractions. Promising fractions of root part of plant were subjected to silica gel column chromatography to obtain pure compounds and their structures were elucidated by detailed spectroscopic analysis. Pure compounds were also tested against Pf3D7 and PfINDO strains. A rapid and simple UPLC-DAD method was developed for the identification and quantification of pharmaceutically important metabolites of C. pareira. RESULTS: Among different extracts, the hydro ethanolic extract of root part of C. pareira was found most active with IC50 values (µg/ml) of 1.42 and 1.15 against Pf 3D7 and Pf INDO, respectively. Tested against Pf 3D7 the most potent fractions were root ethyl acetate fraction (IC50 4.0 µg/ml), stem water fraction (IC50 4.4 µg/ml), and root water fraction (IC50 8.5 µg/ml). Further, phytochemical investigation of active fractions of root part led to the isolation and characterization of a new isoquinoline alkaloid, namely pareirarine (8), along with five known compounds magnoflorine (5), magnocurarine (10), salutaridine (11), cissamine (13) and hayatinine (15). Hayatinine (15), a bisbenzylisoquinoline alkaloid, isolated from root ethyl acetate fraction was most promising compound with IC50 of 0.41 µM (Pf INDO) and 0.509 µM (Pf 3D7). Magnocurarine (10) and cissamine (13) were also found active with IC50 values of 12.51 and 47.34 µM against Pf INDO and 12.54 and 8.76 µM against Pf 3D7, respectively. A total of thirty compounds were detected in studied extracts and fractions, structures were assigned to 15 of these and five of these biologically important compounds were quantified. Isolation of saluteridine (11) from C. pareira and the evaluation of antiplasmodial activity of pure compound from C. pariera is disclosed for the first time. CONCLUSION: This study concludes that the antimalarial potential of C. pareira may be attributed to isoquinoline type alkaloids present in this plant and also provides the scientific evidence for the traditional use of this plant in treatment of malaria.


Asunto(s)
Antimaláricos/química , Antimaláricos/aislamiento & purificación , Cissampelos , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/farmacología , Células Cultivadas , Eritrocitos/efectos de los fármacos , Eritrocitos/fisiología , Células HEK293 , Humanos , Extractos Vegetales/farmacología , Hojas de la Planta/química , Raíces de Plantas/química , Tallos de la Planta/química , Plasmodium falciparum/fisiología
12.
J Ethnopharmacol ; 235: 111-121, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-30738118

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Annona muricata (Annonaceae) is a commonly used medicinal plants in Cameroonian traditional medicines to treat various diseases including malaria. Previous studies have shown that extracts from this plant have antiplasmodial activity. AIM OF THE STUDY: This study aimed to explore the endophyic fungi associated with some parts of this plant for their ability to produce antiplasmodial metabolites. MATERIALS AND METHODS: One hundred and fifty-two endophytic fungi isolated from twelve different organs of A. muricata were cultured and the ethyl acetate extracts of conditioned media screened for antiplasmodial activity using the 96-well microtiter plate format SYBR green florescence assay against Chloroquine-sensitive Pf3D7 and Chloroquine-resistant PfINDO/PfDd2 strains of Plasmodium falciparum. RESULTS: Twenty-seven (17.76%) of fungi tested were found to completely inhibit the growth of Plasmodium parasites at 10 µg/mL. The 5.8S rDNA sequencing data revealed the strongly active (IC50 < 2 µg/mL against at least 2 P. falciparum strains) isolates to be Trichoderma afroharzianum AMrb7, Penicillium citrinum AMrb11, Neocosmospora rubicola AMb22, Penicillium tropicum AMb3, Penicillium citrinum AMrb23, Aspergillus versicolor AMb7, and Fusarium sp AMst1. Of these, the extracts from Penicillium citrinum AMrb11 (IC50 0.84-0.93 µg/mL) and Neocosmospora rubicola AMb22 (IC50 0.39-1.92 µg/mL) showed the highest promise against all three plasmodial strains with selectivity indices ranging from 34.71 to 180.97. Dynamic head space GC-MS analysis of ethyl acetate extracts of promising fungi revealed broad-spectrum antimicrobial compounds such as Penicidin, Aromadendrene, Ethyl p-methoxycinnamate, 2-Coumaranone and 2-Methyl resorcinol. CONCLUSION: These results have opened new avenues for discovery of novel antimalarial lead compounds from endophytic fungi associated with Annona muricata - a medicinally important plant.


Asunto(s)
Annona/microbiología , Antimaláricos/farmacología , Hongos/aislamiento & purificación , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/administración & dosificación , Antimaláricos/aislamiento & purificación , Camerún , Cloroquina/farmacología , Descubrimiento de Drogas/métodos , Endófitos/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas/métodos , Concentración 50 Inhibidora , Medicinas Tradicionales Africanas/métodos
13.
Medicines (Basel) ; 5(4)2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30380685

RESUMEN

Background: In the midst of transient victories by way of insecticides against mosquitoes or drugs against malaria, the most serious form of malaria, caused by Plasmodium falciparum, continues to be a major public health problem. The emergence of drug-resistant malaria parasites facilitated by fake medications or the use of single drugs has worsened the situation, thereby emphasizing the need for a continued search for potent, safe, and affordable new antimalarial treatments. In line with this need, we have investigated the antiplasmodial activity of 66 different extracts prepared from 10 different medicinal plants that are native to Cameroon. Methods: Extracts were evaluated for their capacity to inhibit the growth of the chloroquine-sensitive (Pf3D7) and resistant (PfINDO) strains of P. falciparum using the SYBR green fluorescence method. The cytotoxicity of promising extracts against human embryonic kidney cells (HEK293T) mammalian cells was assessed by MTT assay. Results: The antiplasmodial activity (50% inhibitory concentration, IC50) of plant extracts ranged from 1.90 to >100 µg/mL against the two strains. Six extracts exhibited good activity against both Pf3D7 and PfINDO strains, including cold water, water decoction, and ethyl acetate extracts of leaves of Drypetes principum (Müll.Arg.) Hutch. (IC503D7/INDO = 4.91/6.64 µg/mL, 5.49/5.98 µg/mL, and 6.49/7.10 µg/mL respectively), water decoction extract of leaves of Terminalia catappa L. (IC503D7/INDO = 6.41/8.10 µg/mL), and water decoction extracts of leaves and bark of Terminalia mantaly H.Perrier (IC503D7/INDO = 2.49/1.90 µg/mL and 3.70/2.80 µg/mL respectively). These promising extracts showed no cytotoxicity against HEK293T up to 200 µg/mL, giving selectivity indices (SIs) in the range of >31.20⁻80.32. Conclusions: While providing credence to the use of D. principum, T. catappa, and T. mantaly in the traditional treatment of malaria, the results achieved set the stage for isolation and identification of active principles and ancillary molecules that may provide us with new drugs or drug combinations to fight against drug-resistant malaria.

14.
J Org Chem ; 83(20): 12702-12710, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30211555

RESUMEN

Here, a facile and efficient protocol for the synthesis of 3-hydroxyquinolin-8-yl propanoates via Rh(III)-catalyzed C(8)-H activation of 2-substituted quinolines has been developed. The reaction proceeds via C(8)-H activation, functionalization with acrylates, followed by intramolecular migration of the oxygen atom from quinoline N-oxides to the acrylate moiety. In this approach, N-oxide plays a dual role of a traceless directing group as well as a source of an oxygen atom for hydroxylation. This catalytic method involves simultaneous formation of new C-C and C-O bonds and is applicable only for C2-substituted quinolines. A catalytically competent five-membered rhodacycle has been characterized, thus revealing a key intermediate in the catalytic cycle. In silico docking studies against Falcipan-2 have revealed that 3a, 3b, 3g, and 3m have better scores. In vitro evaluation of selected compounds against CQ-sensitive pf3D7 and CQ-resistant pfINDO strains provided evidence that 3d (IC50 13.3 µM) and 3g (IC50 9.5 µM) had good promise against Plasmodium falciparum in the in vitro culture. Compound 3g was found to be the most potent on the basis of both in vitro antiplasmodial activity [IC50 9.5 µM ( Pf3D7) and 11.9 µM ( PfINDO), resistance index 1.25] and in silico studies.


Asunto(s)
Antimaláricos/síntesis química , Antimaláricos/farmacología , Quinolinas/síntesis química , Quinolinas/farmacología , Rodio/química , Catálisis , Óxidos N-Cíclicos/química , Cisteína Endopeptidasas/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Simulación del Acoplamiento Molecular , Estructura Molecular , Plasmodium falciparum/efectos de los fármacos , Unión Proteica , Relación Estructura-Actividad
15.
Parasitol Res ; 117(8): 2473-2485, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29797084

RESUMEN

Plasmodial resistance to artemisinin-based combination therapies emphasizes the need for new drug development to control malaria. This paper describes the antiplasmodial activity of metabolites produced by endophytic fungi of three Cameroonian plants. Ethyl acetate extracts of fungi cultivated on three different media were tested against Plasmodium falciparum chloroquine-sensitive (Pf3D7) and chloroquine-resistant (PfINDO) strains using the SYBR green florescence assay. Selected endophytes were further grown in potato dextrose broth supplemented with small organic elicitors and their extracts tested for activity. The effect of elicitors on de novo metabolite synthesis was assessed by reverse-phase HPLC. Activity screening of 81 extracts indicated that Aspergillus niger 58 (IC50 2.25-6.69 µg/mL, Pf3D7), Fusarium sp. N240 (IC50 1.62-4.38 µg/mL, Pf3D7), Phomopsis sp. N114 (IC50 0.34-7.26 µg/mL, Pf3D7), and Xylaria sp. N120 (IC50 2.69-6.77 µg/mL, Pf3D7) produced potent extracts when grown in all three media. Further culture of these endophytes in potato dextrose broth supplemented with each of the eight small organic elicitors and subsequent extracts screening indicated the extract of Phomopsis sp. N114 grown with 1% 1-butanol to be highly selective and extremely potent (IC50 0.20-0.33 µg/mL; SI > 666). RPHPLC profiles of extracts of Phomopsis sp. N114 grown with or without 1-butanol showed some peaks of enhanced intensities in the former without any qualitative change in the chromatograms. This study showed the ability of selected endophytes to produce potent and selective antiplasmodial metabolites in varied culture conditions. It also showed how the production of desired metabolites can be enhanced by use of small molecular weight elicitors.


Asunto(s)
Antimaláricos/farmacología , Aspergillus niger/metabolismo , Cananga/microbiología , Extractos Celulares/farmacología , Fusarium/metabolismo , Plasmodium falciparum/efectos de los fármacos , Terminalia/microbiología , Xylariales/metabolismo , Antimaláricos/metabolismo , Artemisininas/farmacología , Aspergillus niger/aislamiento & purificación , Agentes de Control Biológico/metabolismo , Agentes de Control Biológico/farmacología , Camerún , Cloroquina/farmacología , Medios de Cultivo Condicionados , Fusarium/aislamiento & purificación , Malaria/tratamiento farmacológico , Pruebas de Sensibilidad Parasitaria , Extractos Vegetales/farmacología , Plantas Medicinales/microbiología , Xylariales/aislamiento & purificación
16.
Malar J ; 17(1): 142, 2018 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-29615047

RESUMEN

BACKGROUND: The emergence and spread of malaria parasites resistant to artemisinin-based combination therapy stresses the need for novel drugs against malaria. Investigating plants used in traditional medicine to treat malaria remains a credible option for new anti-malarial drug development. This study was aimed at investigating the antiplasmodial activity and selectivity of extracts and fractions from Terminalia mantaly and Terminalia superba (Combretaceae) that are used in Cameroon to treat malaria. METHODS: Twelve methanolic (m) and water (w) extracts obtained by maceration of powdered dried leaves (l), stem bark (sb) and root (r) of Terminalia mantaly (Tm) and Terminalia superba (Ts) and 12 derived fractions of hexane, chloroform, ethyl acetate and 4 final residues of selected extracts were assessed for antiplasmodial potential in vitro against the chloroquine-resistant PfINDO and the chloroquine-sensitive Pf3D7 strains of Plasmodium falciparum using the SYBR green I-based fluorescence assay. The cytotoxicity of potent extracts and fractions was evaluated in vitro using the MTT assay on HEK239T cell line. RESULTS: The antiplasmodial IC50 of extracts from both plants ranged from 0.26 to > 25 µg/mL. Apart from the extracts Tmrm and Tsrw that exerted moderate antiplasmodial activities (IC50: 5-20 µg/mL) and Tmrw that was found to be non-active at the tested concentrations (IC50 > 25 µg/mL), all other tested crude extracts exhibited potent activities with IC50 < 5 µg/mL. The aqueous extracts from the stem bark of Terminalia mantaly (Tmsbw) and the leaf of Terminalia superba (Tslw) displayed the highest antiplasmodial activities (IC50: 0.26-1.26 µg/mL) and selectivity (SI > 158) on both resistant PfINDO and sensitive Pf3D7 strains. Four fractions upon further extraction with chloroform and ethyl acetate (TmlwChl, TmsbwChl, TmsbwEA, TsrmEA) afforded from three selected crude extracts (Tmlw, Tmsbw, Tsrm) exhibited highly potent activities against both P. falciparum strains (IC50 < 2 µg/mL) and high selectivity (SI > 109). CONCLUSIONS: The results achieved in this work validate the reported traditional use of Terminalia mantaly and Terminalia superba to treat malaria. Moreover, the highly potent and selective fractions warrant further investigation to characterize the active antiplasmodial principles and progress them to rodent malaria models studies if activity and selectivity are evidenced.


Asunto(s)
Antimaláricos/farmacología , Citotoxinas/farmacología , Medicinas Tradicionales Africanas , Extractos Vegetales/farmacología , Plasmodium falciparum/efectos de los fármacos , Terminalia/química , Camerún , Malaria Falciparum/tratamiento farmacológico , Hojas de la Planta/química , Plantas Medicinales/química , Especificidad de la Especie
17.
Parasitol Res ; 117(5): 1473-1484, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29550997

RESUMEN

The plant kingdom continues to hold great promise for the eradication of Malaria infection following the challenges of insecticide resistance by the vector mosquito, drug resistance by the parasite, and the development of a vaccine still being a mirage. Acalypha wilkesiana Muller Argoviensis, 1866 (family: Euphorbiaceae) leaves have the ethnopharmacological reputation for use as a remedy against dermal microbial infections in Nigeria. Here, we have studied the antiplasmodial potential of the extract of the leaves of this ornamental plant. Aqueous methanol crude extract (70%) and Prep reversed-phase high-performance liquid chromatography (RPHPLC) fractions were tested in vitro against blood stage Plasmodium falciparum 3D7 strain parasites for antiplasmodial activity using the SYBR Green assay. Results obtained were validated through Giemsa stained microscopic blood smeared slides. An IC50 of < 0.39 µg/ml for fractions of the RPHPLC together with TC50 of > 100 µg/ml against mammalian HUH-7 cell lines and a HC50 of > 100 µg/ml against red blood cells indicate a high selectivity of this plant against Plasmodium. This is the first report of the antiplasmodial activity of this plant and a GC-MS fingerprinting of the same, opening the possibilities of identifying novel pharmacophores against the malaria parasite.


Asunto(s)
Acalypha/química , Antimaláricos/farmacología , Malaria Falciparum/tratamiento farmacológico , Extractos Vegetales/farmacología , Plasmodium falciparum/efectos de los fármacos , Animales , Línea Celular , Resistencia a Medicamentos/efectos de los fármacos , Etnofarmacología , Cromatografía de Gases y Espectrometría de Masas , Malaria Falciparum/parasitología , Nigeria , Hojas de la Planta/química
18.
Pharm Biol ; 55(1): 1394-1400, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28320254

RESUMEN

CONTEXT: Zea mays L. (Poacae) husk decoctions are traditionally used in the treatment of malaria by various tribes in Nigeria. OBJECTIVE: To assess the antimalarial and antiplasmodial potentials of the husk extract and fractions on malaria parasites using in vivo and in vitro models. MATERIALS AND METHODS: The ethanol husk extract and fractions (187-748 mg/kg, p.o.) of Zea mays were investigated for antimalarial activity against Plasmodium berghei using rodent (mice) malaria models and in vitro activity against chloroquine sensitive (Pf 3D7) and resistant (Pf INDO) strains of Plasmodium falciparum using the SRBR green assay method. Median lethal dose and cytotoxic activities against HeLa and HEKS cells were also carried out. The GCMS analysis of the most active fraction was carried out. RESULTS: The husk extract (187-748 mg/kg, p.o.) with LD50 of 1874.83 mg/kg was found to exert significant (p < 0.05-0.001) antimalarial activity against P. berghei infection in suppressive, prophylactive and curative tests. The crude extract and fractions also exerted prominent activity against both chloroquine sensitive (Pf 3D7) and resistant (Pf INDO) strains of P. falciparum with the ethyl acetate fraction exerting the highest activity with IC50 values of 9.31 ± 0.46 µg/mL (Pf 3D7) and 3.69 ± 0.66 µg/mL (Pf INDO). The crude extract and fractions were not cytotoxic to the two cell lines tested with IC50 values of >100 µg/mL against both HeLa and HEKS cell lines. DISCUSSION AND CONCLUSION: These results suggest that the husk extract/fractions of Zea mays possesses antimalarial and antiplasmodial activities and these justify its use in ethnomedicine to treat malaria infections.


Asunto(s)
Antimaláricos/farmacología , Malaria/tratamiento farmacológico , Extractos Vegetales/farmacología , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Zea mays/química , Animales , Antimaláricos/aislamiento & purificación , Antimaláricos/toxicidad , Supervivencia Celular/efectos de los fármacos , Cloroquina/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Resistencia a Medicamentos , Etanol/química , Femenino , Células HEK293 , Células HeLa , Humanos , Concentración 50 Inhibidora , Malaria/parasitología , Masculino , Ratones , Pruebas de Sensibilidad Parasitaria , Fitoterapia , Componentes Aéreos de las Plantas/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad , Plantas Medicinales , Plasmodium berghei/crecimiento & desarrollo , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Solventes/química , Factores de Tiempo
19.
Malar J ; 14: 65, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25879738

RESUMEN

BACKGROUND: Development of resistance against the frontline anti-malarial drugs has created an alarming situation, which requires intensive drug discovery to develop new, more effective, affordable and accessible anti-malarial agents. METHODS: Inspired by their ethnobotanical reputation for being effective against febrile diseases, antiplasmodial potential of ethyl acetate extracts (EAE) and methanol extracts (ME) of 17 medicinal plants collected from the Eastern Ghats of South India and Buchpora, North India were explored against Plasmodium falciparum in vitro using the SYBR Green assay. The results were validated both by confirmation that the fall in fluorescence signal was not due to quenching effects mediated by phytochemical extracts and by Giemsa-stained microscopy. RESULTS: Using EAE or ME, promising antiplasmodial activity (IC50 Pf3D7 ≤ 20 µg/ml), was seen in Aerva lanata (Whole aerial parts-EAE), Anisomeles malabarica (Leaf-EAE), Anogeissus latifolia (bark-EAE), Cassia alata (leaves-EAE), Glycyrrhiza glabra (root-EAE), Juglans regia (seed-ME), Psidium guajava (leaf-ME and EAE) and Solanum xanthocarpum (Whole aerial parts-EAE). EAEs from leaves of Couroupita guianensis, Euphorbia hirta, Pergularia daemia, Tinospora cordifolia and Tridax procumbens as also ME from Ricinus communis (leaf and seed) showed good antiplasmodial activity (Pf 3D7 IC50 21 - 40 µg/ml). Moderate activity (Pf 3D7 IC50: 40-60 µg/mL) was shown by the leaf EAEs of Cardiospermum halicacabum, Indigofera tinctoria and Ricinus communis while the remaining extracts showed marginal (Pf 3D7 IC50 60 to >100 µg/ml) activities. The promising extracts showed good resistance indices (0.41 - 1.4) against the chloroquine resistant INDO strain of P. falciparum and good selectivity indices (3 to > 22.2) when tested against the HeLa cell line. CONCLUSION: These results provide validity to the traditional medicinal usage of some of these plants and further make a case for activity-guided purification of new pharmacophores against malaria.


Asunto(s)
Antimaláricos/farmacología , Extractos Vegetales/farmacología , Plantas Medicinales/química , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/toxicidad , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Eritrocitos/parasitología , Células HeLa , Humanos , India , Extractos Vegetales/toxicidad
20.
Parasit Vectors ; 8: 183, 2015 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-25884649

RESUMEN

BACKGROUND: Exploration of immunomodulatory antileishmanials of plant origin is now being strongly recommended to overcome the immune suppression evident during visceral leishmaniasis (VL) and high cost and toxicity associated with conventional chemotherapeutics. In accordance, we assessed the in vitro and in vivo antileishmanial and immunomodulatory potential of ethanolic fractions of Azadirachta indica leaves (ALE) and seeds (ASE). METHODS: A. indica fractions were prepared by sequential extraction of the powdered plant parts in hexane, ethanol and water. Erythrosin B staining was employed to appraise the anti-promastigote potential of ALE and ASE. Cytostatic or cytocidal mode of action was ascertained and alterations in parasite morphology were depicted under oil immersion light microscopy. Study of apoptotic correlates was performed to deduce the mechanism of induced cell death and anti-amastigote potential was assessed in Leishmania parasitized RAW 264.7 macrophages. In vivo antileishmanial effectiveness was evaluated in L. donovani infected BALB/c mice, accompanied by investigation of immunomodulatory potential of ALE and ASE. Adverse toxicity of the bioactive fractions against RAW macrophages was studied by MTT assay. In vivo side effects on the liver and kidney functions were also determined. Plant secondary metabolites present in ALE and ASE were analysed by Gas chromatography-mass spectrometry (GC-MS). RESULTS: ALE and ASE (500 µg ml(-1)) exhibited leishmanicidal activity in a time- and dose-dependent manner (IC50 34 and 77.66 µg ml(-1), respectively) with alterations in promastigote morphology and induction of apoptosis. ALE and ASE exerted appreciable anti-amastigote potency (IC50 17.66 and 24.66 µg ml(-1), respectively) that was coupled with profound in vivo therapeutic efficacy (87.76% and 85.54% protection in liver and 85.55% and 83.62% in spleen, respectively). ALE exhibited minimal toxicity with selectivity index of 26.10 whereas ASE was observed to be non-toxic. The bioactive fractions revealed no hepato- and nephro-toxicity. ALE and ASE potentiated Th1-biased cell-mediated immunity along with upregulation of INF-γ, TNF-α and IL-2 and decline in IL-4 and IL-10 levels. GC-MS analysis revealed several compounds that may have contributed to the observed antileishmanial effect. CONCLUSION: Dual antileishmanial and immunostimulatory efficacy exhibited by the bioactive fractions merits their use alone or as adjunct therapy for VL.


Asunto(s)
Antihelmínticos/uso terapéutico , Apoptosis , Azadirachta/química , Factores Inmunológicos/uso terapéutico , Leishmaniasis/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Células TH1/inmunología , Animales , Antihelmínticos/efectos adversos , Antihelmínticos/aislamiento & purificación , Antihelmínticos/farmacología , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Factores Inmunológicos/efectos adversos , Factores Inmunológicos/aislamiento & purificación , Factores Inmunológicos/farmacología , Leishmania/citología , Leishmania/efectos de los fármacos , Leishmania/fisiología , Leishmaniasis/parasitología , Macrófagos/parasitología , Ratones Endogámicos BALB C , Microscopía , Extractos Vegetales/efectos adversos , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Hojas de la Planta/química , Semillas/química , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA