Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Heliyon ; 10(2): e24120, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38298712

RESUMEN

Inflammatory diseases contribute to more than 50 % of global deaths. Research suggests that network pharmacology can reveal the biological mechanisms underlying inflammatory diseases and drug effects at the molecular level. The aim of the study was to clarify the biological mechanism of Cinnamomum zeylanicum essential oil (CZEO) and predict molecular targets of CZEO against inflammation by employing network pharmacology and in vitro assays. First, the genes related to inflammation were identified from the Genecards and Online Mendelian Inheritance in Man (OMIM) databases. The CZEO targets were obtained from the SwissTargetPrediction and Similarity Ensemble Approach (SEA) database. A total of 1057 CZEO and 526 anti-inflammation targets were obtained. The core hub target of CZEO anti-inflammatory was obtained using the protein-protein interaction network. KEGG pathway analysis suggested CZEO to exert anti-inflammatory effect mainly through Tumor necrosis factor, Toll-like receptor and IL-17 signalling pathway. Molecular docking of active ingredients-core targets interactions was modelled using Pyrx software. Docking and simulation studies revealed benzyl benzoate to exhibit good binding affinity towards IL8 protein. MTT assay revealed CZEO to have non-cytotoxic effect on RAW 264.7 cells. CZEO also inhibited the production of NO, PGE2, IL-6, IL-1ß and TNF-α and promoted the activity of endogenous antioxidant enzymes in LPS-stimulated RAW 264.7 cells. Additionally, CZEO inhibited intracellular ROS generation, NF-kB nuclear translocation and modulated the expression of downstream genes involved in Toll-like receptor signalling pathway. The results deciphered the mechanism of CZEO in treating inflammation and provided a theoretical basis for its clinical application.

2.
J Ethnopharmacol ; 317: 116835, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37355085

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Hedychium of family Zingiberaceae comprises several perennial rhizomatous species widely used in perfumery and traditional folk medicine to treat diseases related to asthma, diarrhoea, nausea, stomach disorders, inflammation and tumours. Several species of Hedychium have remained under-explored with respect to their chemical composition and biological activities. AIM OF THE STUDY: The current research aimed to explore the chemical composition and evaluate the antiproliferative and anti-inflammatory activities of rhizome essential oil from four Hedychium species (H. coccineum, H. gardnerianum, H. greenii and H. griffithianum). MATERIALS AND METHODS: Compound identification was accomplished using a Clarus 580 gas chromatography system in conjunction with mass spectrometry (GC-MS). The multivariate data statistics using chemometrics (PCA, PLS-DA, sPLS-DA) and cluster analysis (Dendrogram, Heat maps, K-means) were used to compare the similarity and relationship among Hedychium metabolomes. MTT assay was employed to visualize the antiproliferative property against MCF7, HepG2 and PC3 cancerous cell lines. The toxicity of essential oils was determined using 3T3-L1 non-tumorigenic/normal cells. Lipopolysaccharide (LPS)-induced RAW 264.7 cells were used to investigate the anti-inflammatory properties of Hedychium essential oils by measuring the production of nitric oxide (NO) using the Griess reagent method. Furthermore, the levels of prostaglandin (PGE2) and pro-inflammatory cytokines (TNF-α, IL-6, IL-1ß) was assessed using the ELISA technique. RESULTS: In total, 82 compounds were identified in four targeted species of Hedychium from which 1,8-cineole (52.71%), ß-pinene (32.83%), α-pinene (19.62%), humulene epoxide II (19.86%) and humulene epoxide I (19.10%) were the major constituents. Monoterpenes (8.5-59.9%) and sesquiterpenes (2.87-54.11%) were the two class of compounds, found as the most prevalent in the extracted essential oils. The multivariate analysis classified the four Hedychium species into three different clusters. Hedychium essential oils exhibited potent antiproliferative activity against MCF7, HepG2 and PC3 cancer cell lines with IC50 values less than 150 µg/mL where H. gardnerianum exhibited the highest selective cytotoxicity against human breast and prostate adenocarcinoma cells with an IC50 value of 44.04 ± 1.07 µg/mL and 56.11 ± 1.44 µg/mL, respectively. The essential oils on normal (3T3-L1) cells displayed no toxicity with higher IC50 values thereby concluding as safe to use for normal human health without causing any side effects. Besides, the essential oils at 100 µg/mL concentration revealed remarkable anti-inflammatory activity in LPS-activated RAW 264.7 murine macrophages by inhibiting the production of inflammatory mediators, with H. greenii exhibiting the maximum anti-inflammation response by significantly suppressing the levels of NO (84%), PGE2 (87%), TNF-α (94.3%), IL-6 (95%) and IL-1ß (85%) as compared to LPS treated group. CONCLUSION: The present findings revealed that the Hedychium species traditionally used in therapeutics could be a potential source of active compounds with antiproliferative and anti-inflammatory properties.


Asunto(s)
Aceites Volátiles , Zingiberaceae , Masculino , Ratones , Humanos , Animales , Aceites Volátiles/química , Zingiberaceae/química , Rizoma/química , Lipopolisacáridos , Interleucina-6/análisis , Factor de Necrosis Tumoral alfa/análisis , Cromatografía de Gases y Espectrometría de Masas , Antiinflamatorios/química , Análisis Multivariante
3.
Molecules ; 27(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36364127

RESUMEN

Magnolia champaca (L.) Baill. ex Pierre of family Magnoliaceae, is a perennial tree with aromatic, ethnobotanical, and medicinal uses. The M. champaca leaf is reported to have a myriad of therapeutic activities, however, there are limited reports available on the chemical composition of the leaf essential oil of M. champaca. The present study explored the variation in the yield and chemical composition of leaf essential oil isolated from 52 accessions of M. champaca. Through hydrodistillation, essential oil yield was obtained, varied in the range of 0.06 ± 0.003% and 0.31 ± 0.015% (v/w) on a fresh weight basis. GC-MS analysis identified a total of 65 phytoconstituents accounting for 90.23 to 98.90% of the total oil. Sesquiterpene hydrocarbons (52.83 to 65.63%) constituted the major fraction followed by sesquiterpene alcohols (14.71 to 22.45%). The essential oils were found to be rich in ß-elemene (6.64 to 38.80%), γ-muurolene (4.63 to 22.50%), and ß-caryophyllene (1.10 to 20.74%). Chemometrics analyses such as PCA, PLS-DA, sPLS-DA, and cluster analyses such as hierarchical clustering, i.e., dendrogram and partitional clustering, i.e., K-means classified the essential oils of M. champaca populations into three different chemotypes: chemotype I (ß-elemene), chemotype II (γ-muurolene) and chemotype III (ß-caryophyllene). The chemical polymorphism analyzed in the studied populations would facilitate the selection of chemotypes with specific compounds. The chemotypes identified in the M. champaca populations could be developed as promising bio-resources for conservation and pharmaceutical application and further improvement of the taxa.


Asunto(s)
Magnolia , Aceites Volátiles , Sesquiterpenos , Magnolia/química , Cromatografía de Gases y Espectrometría de Masas , Quimiometría , Sesquiterpenos/análisis , Aceites Volátiles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA