Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Mol Model ; 28(11): 365, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36274116

RESUMEN

Dengue fever has been a global health concern. Mitigation is a challenging problem due to non-availability of workable treatments. The most difficult objective is to design a perfect anti-dengue agent capable of inhibiting infections caused by all four serotypes. Various tactics have been employed in the past to discover dengue antivirals, including screening of chemical compounds against dengue virus enzymes. The objective of the current study is to investigate phytocompounds as anti-dengue remedies that target the non-structural 2B and non-structural 3 protease (NS2B-NS3pro), a possible therapeutic target for dengue fever. Initially, 300 + antiviral phytocompounds were collected from Duke's phytochemical and ethnobotanical database and 30 phytocompounds with anti-dengue properties were identified from previously reported studies, which were virtually screened against NS2B-NS3pro using molecular docking and toxicity evaluation. The top five most screened ligands were naringin, hesperidin, gossypol, maslinic acid and rhodiolin with binding affinities of - 8.7 kcal/mol, - 8.5 kcal/mol, - 8.5 kcal/mol, - 8.5 kcal/mol and - 8.1 kcal/mol, respectively. The finest docked compounds complexed with NS2B-NS3pro were subjected for molecular dynamics (MD) simulations and binding free energy estimations through molecular mechanics generalized born surface area-based calculations. The results of the study are intriguing in the context of computer-aided screening and the binding affinities of the phytocompounds, proposing maslinic acid (MAS) as a potent bioactive antiviral for the development of phytocompound-based anti-dengue agent.


Asunto(s)
Virus del Dengue , Dengue , Gosipol , Hesperidina , Humanos , Simulación del Acoplamiento Molecular , Antivirales/farmacología , Antivirales/química , Simulación de Dinámica Molecular , Proteínas no Estructurales Virales/química , Virus del Dengue/metabolismo , Péptido Hidrolasas/metabolismo , Fitoquímicos , Dengue/tratamiento farmacológico , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA