Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 16(12): e0261189, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34941893

RESUMEN

Because of a possible impact of capsaicin in the high concentrations on enterocyte injury (cytotoxicity) and bactericidal activity on probiotics, Lactobacillus rhamnosus L34 (L34) and Lactobacillus rhamnosus GG (LGG), the probiotics derived from Thai and Caucasian population, respectively, were tested in the chili-extract administered C57BL/6 mice and in vitro experiments. In comparison with placebo, 2 weeks administration of the extract from Thai chili in mice caused loose feces and induced intestinal permeability defect as indicated by FITC-dextran assay and the reduction in tight junction molecules (occludin and zona occludens-1) using fluorescent staining and gene expression by quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the chili extracts also induced the translocation of gut pathogen molecules; lipopolysaccharide (LPS) and (1→3)-ß-d-glucan (BG) and fecal dysbiosis (microbiome analysis), including reduced Firmicutes, increased Bacteroides, and enhanced total Gram-negative bacteria in feces. Both L34 and LGG attenuated gut barrier defect (FITC-dextran, the fluorescent staining and gene expression of tight junction molecules) but not improved fecal consistency. Additionally, high concentrations of capsaicin (0.02-2 mM) damage enterocytes (Caco-2 and HT-29) as indicated by cell viability test, supernatant cytokine (IL-8), transepithelial electrical resistance (TEER) and transepithelial FITC-dextran (4.4 kDa) but were attenuated by Lactobacillus condition media (LCM) from both probiotic-strains. The 24 h incubation with 2 mM capsaicin (but not the lower concentrations) reduced the abundance of LGG (but not L34) implying a higher capsaicin tolerance of L34. However, Lactobacillus rhamnosus fecal abundance, using qRT-PCR, of L34 or LGG after 3, 7, and 20 days of the administration in the Thai healthy volunteers demonstrated the similarity between both strains. In conclusion, high dose chili extracts impaired gut permeability and induced gut dysbiosis but were attenuated by probiotics. Despite a better capsaicin tolerance of L34 compared with LGG in vitro, L34 abundance in feces was not different to LGG in the healthy volunteers. More studies on probiotics with a higher intake of chili in human are interesting.


Asunto(s)
Capsaicina/efectos adversos , Disbiosis/prevención & control , Tracto Gastrointestinal/efectos de los fármacos , Inflamación/prevención & control , Lacticaseibacillus rhamnosus/química , Probióticos/administración & dosificación , Adolescente , Adulto , Anciano , Animales , Antibacterianos/administración & dosificación , Antipruriginosos/administración & dosificación , Antipruriginosos/efectos adversos , Capsaicina/administración & dosificación , Citocinas/metabolismo , Disbiosis/inducido químicamente , Disbiosis/microbiología , Disbiosis/patología , Heces/microbiología , Femenino , Tracto Gastrointestinal/microbiología , Humanos , Inflamación/inducido químicamente , Inflamación/microbiología , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Extractos Vegetales/administración & dosificación , Extractos Vegetales/efectos adversos , Probióticos/efectos adversos , Uniones Estrechas , Adulto Joven
2.
J Inflamm Res ; 13: 719-735, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33116751

RESUMEN

INTRODUCTION: Systemic inflammation induced by gut translocation of lipopolysaccharide (LPS), a major component of Gram-negative bacteria, in thalassemia with iron-overload worsens sepsis. However, the impact of (1→3)-ß-D-glucan (BG), a major fungal molecule, in iron-overload thalassemia is still unclear. Hence, the influence of BG was explored in 1) iron-overload mice with sepsis induced by cecal ligation and puncture (CLP) surgery; and 2) in bone marrow-derived macrophages (BMMs). METHODS: The heterozygous ß-globin-deficient mice, Hbbth3/+ mice, were used as representative thalassemia (TH) mice. Iron overload was generated by 6 months of oral iron administration before CLP surgery- induced sepsis in TH mice and wild-type (WT) mice. Additionally, BMMs from both mouse strains were used to explore the impact of BG. RESULTS: Without sepsis, iron-overload TH mice demonstrated more severe intestinal mucosal injury (gut leakage) with higher LPS and BG in serum, from gut translocation, when compared with WT mice. With CLP in iron-overload mice, sepsis severity in TH mice was more severe than WT as determined by survival analysis, organ injury (kidney and liver), bacteremia, endotoxemia, gut leakage (FITC-dextran) and serum BG. Activation by LPS plus BG (LPS+BG) in BMMs and in peripheral blood-derived neutrophils (both WT and TH cells) demonstrated more prominent cytokine production when compared with LPS activation alone. In parallel, LPS+BG also prominently induced genes expression of M1 macrophage polarization (iNOS, TNF-α and IL-1ß) in both WT and TH cells in comparison with LPS activation alone. In addition, LPS+BG activated macrophage cytokine production was enhanced by a high dose of ferric ion (800 mM), more predominantly in TH macrophages compared with WT cells. Moreover, LPS+BG induced higher glycolysis activity with similar respiratory capacity in RAW264.7 (a macrophage cell line) compared with LPS activation alone. These data support an additive pro-inflammatory effect of BG upon LPS. CONCLUSION: The enhanced-severity of sepsis in iron-overload TH mice was due to 1) increased LPS and BG in serum from iron-induced gut-mucosal injury; and 2) the pro-inflammatory amplification by ferric ion on LPS+BG activation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA