Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Microbiol Rep ; 14(1): 25-33, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34914187

RESUMEN

Effects of an environmental endocrine disruptor, para-nonylphenol (NP) on the cell growth of a photosynthetic eukaryotic microorganism, Euglena gracilis were analysed under different cell culture conditions. Although NP did not show significant inhibitory effects on the cell growth of E. gracilis (Z and SM strains) under light culture condition, NP exhibited significant suppressive effects under dark culture condition. Exogenous supplementation with lipophilic antioxidants (α-tocopherol, ß-carotene or 6-O-palmitoyl-ascorbic acid) to E. gracilis caused strong preventive effects against NP-induced cell growth inhibition under dark culture condition, but hydrophilic antioxidants [ascorbic acid, glutathione and epigallocatechin gallate (EGCG)] did not show significant preventive effects. NP caused significant generation of reactive oxygen species (ROS) in E. gracilis under dark culture condition, but E. gracilis under light culture condition did not show significant increase in ROS generation. Supplementation with lipophilic antioxidants to E. gracilis caused significant suppressive effects against NP-induced cellular ROS generation under dark culture condition, but hydrophilic antioxidants did not show significant suppressive effects. Furthermore, the productivities of typical cellular antioxidants (α-tocopherol, ß-carotene and ascorbic acid) in E. gracilis under light culture conditions were much higher than those under dark culture conditions.


Asunto(s)
Disruptores Endocrinos , Euglena gracilis , Estrés Oxidativo , Fenoles/farmacología
2.
Enzyme Microb Technol ; 150: 109894, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34489047

RESUMEN

Aspergillus oryzae is a safe microorganism that is commonly used in food production. We constructed a self-cloning vector capable of high expression in A. oryzae. Using the vector, three putative pectin methylesterase (PME) genes belonging to Carbohydrate Esterase family 8 derived from A. oryzae were expressed, and several characteristics of the gene products were examined. The effects of temperature and pH on the three enzymes (AoPME1, 2, and 3) were similar, with optimal reaction temperatures of 50 - 60 °C and optimal reaction pH range of 5 - 6. The specific activities of AoPME1, 2, and 3 for apple pectin were significantly different (34, 7,601, and 2 U/mg, respectively). When the substrate specificity was examined, AoPME1 showed high activity towards pectin derived from soybean and pea. Although AoPME2 showed little activity towards these pectins, it showed very high activity towards apple- and citrus-derived pectins. AoPME3 showed low specific activity towards all substrates tested. Sugar composition analysis revealed that apple- and citrus-derived pectins were rich in homogalacturonan, while soybean- and pea-derived pectins were rich in xylogalacturonan. When pea pectin was treated with endo-polygalacturonase or endo-xylogalacturonase in the presence of each PME, specific synergistic actions were observed (endo-polygalacturonase with AoPME1 or AoPME2 and endo-xylogalacturonase with AoPME1 or AoPME3). Thus, AoPME1 and AoPME3 hydrolyzed the methoxy group in xylogalacturonan. This is the first report of this activity in microbial enzymes. Our findings on the substrate specificity of PMEs should lead to the determination of the distribution of methoxy groups in pectin and the development of new applications in the field of food manufacturing.


Asunto(s)
Aspergillus oryzae , Aspergillus oryzae/genética , Hidrolasas de Éster Carboxílico/genética , Vectores Genéticos , Ácidos Hexurónicos , Pectinas
3.
Carbohydr Polym ; 231: 115738, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31888846

RESUMEN

The chemical structure of pea pectin was delineated using pectin-degrading enzymes and biochemical methods. The molecular weight of the pea pectin preparation was 488,000, with 50 % arabinose content, and neutral sugar side chains attached to approximately 60 % of the rhamnose residues in rhamnogalacturonan-I (RG-I). Arabinan, an RG-I side chain, was highly branched, and the main chain was comprised of α-1,5-l-arabinan. Galactose and galactooligosaccharides were attached to approximately 35 % of the rhamnose residues in RG-I. Long chain ß-1,4-galactan was also present. The xylose substitution rate in xylogalacturonan (XGA) was 63 %. The molar ratio of RG-I/homogalacturonan (HG)/XGA in the backbone of the pea pectin was approximately 3:3:4. When considering neutral sugar side chain content (arabinose, galactose, and xylose), the molar ratio of RG-I/HG/XGA regions in the pea pectin was 7:1:2. These data will help understand the properties of pea pectin.


Asunto(s)
Estructura Molecular , Pectinas/química , Pisum sativum/química , Arabinosa/química , Galactanos/química , Galactosa/química , Glicósido Hidrolasas/química , Ácidos Hexurónicos/química , Pisum sativum/ultraestructura , Pectinas/ultraestructura , Polisacáridos/química , Ramnosa/química , Xilosa/química
4.
Appl Microbiol Biotechnol ; 104(3): 1135-1148, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31853563

RESUMEN

Three recombinant ß-galactosidases (BGALs; PcBGAL35A, PcBGAL35B, and PcGALX35C) belonging to the glycoside hydrolase (GH) family 35 derived from Penicillium chrysogenum 31B were expressed using Pichia pastoris and characterized. PcBGAL35A showed a unique substrate specificity that has not been reported so far. Based on the results of enzymological tests and 1H-nuclear magnetic resonance, PcBGAL35A was found to hydrolyze ß-1,4-galactosyl residues linked to L-rhamnose in rhamnogalacturonan-I (RG-I) of pectin, as well as p-nitrophenyl-ß-D-galactopyranoside and ß-D-galactosyl oligosaccharides. PcBGAL35B was determined to be a common BGAL through molecular phylogenetic tree and substrate specificity analysis. PcGALX35C was found to have similar catalytic capacities for the ß-1,4-galactosyl oligomer and polymer. Furthermore, PcGALX35C hydrolyzed RG-I-linked ß-1,4-galactosyl oligosaccharide side chains with a degree of polymerization of 2 or higher in pectin. The amino acid sequence similarity of PcBGAL35A was approximately 30% with most GH35 BGALs, whose enzymatic properties have been characterized. The amino acid sequence of PcBGAL35B was approximately 80% identical to those of BGALs from Penicillium sp. The amino acid sequence of PcGALX35C was classified into the same phylogenetic group as PcBGAL35A. Pfam analysis revealed that the three BGALs had five domains including a catalytic domain. Our findings suggest that PcBGAL35A and PcGALX35C are enzymes involved in the degradation of galactosylated RG-I in pectin. The enzymes characterized in this study may be applied for products that require pectin processing and for the structural analysis of pectin.


Asunto(s)
Pectinas/metabolismo , Penicillium chrysogenum/enzimología , beta-Galactosidasa/metabolismo , Secuencia de Aminoácidos , Hidrólisis , Penicillium chrysogenum/genética , Filogenia , Pichia/genética , Especificidad por Sustrato , beta-Galactosidasa/genética
5.
Enzyme Microb Technol ; 131: 109380, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31615673

RESUMEN

We previously described the fungus Penicillium chrysogenum 31B, which has high performance to produce the ferulic acid esterase (FAE) for de-esterifying ferulic acids (FAs) from sugar beet pulp. However, the characteristics of this fungus have not yet been determined. Therefore, in this study, we evaluated the molecular characteristics and natural substrate specificity of the Pcfae1 gene from Penicillium chrysogenum and examined its synergistic effects on sugar beet pectin. The Pcfae1 gene was cloned and overexpressed in Pichia pastoris KM71H, and the recombinant enzyme, named PcFAE1, was characterized. The 505 amino acids of PcFAE1 possessed a GCSTG motif (Gly164 to Gly168), characteristic of the serine esterase family. By comparing the amino acid sequence of PcFAE1 with that of the FAE (AoFaeB) of Aspergillus oryzae, Ser166, Asp379, and His419 were identified as the catalytic triad. PcFAE1 was purified through two steps using anion-exchange column chromatography. Its molecular mass without the signal peptide was 75 kDa. Maximum PcFAE1 activity was achieved at pH 6.0-7.0 and 50 °C. The enzyme was stable up to 37 °C and at a pH range of 3-8. PcFAE1 activity was only inhibited by Hg2+, and the enzyme had activity toward methyl FA, methyl caffeic acid, and methyl p-coumaric acid, with specific activities of 6.97, 4.65, and 9.32 U/mg, respectively, but not on methyl sinapinic acid. These results indicated that PcFAE1 acted similar to FaeB type according the Crepin classification. PcFAE1 de-esterified O-[6-O-feruloyl-ß-d-galactopyranosyl-(1→4)]-d-galactopyranose, O-[2-O-feruloyl-α-l-arabinofuranosyl-(1→5)]-l-arabinofuranose, and O-[5-O-feruloyl-α-l-arabinofuranosyl-(1→3)]-O-ß-d-xylopyranosyl-(1→4)-d-xylopyranose, indicating that the enzyme could de-esterify FAs decorated with both ß-d-galactopyranosidic and α-l-arabinofuranosidic residues in pectin and xylan. PcFAE1 acted in synergy with endo-α-1,5-arabinanase and α-l-arabinofuranosidase, which releases FA linked to arabinan, to digest the sugar beet pectin. Moreover, when PcFAE1 was allowed to act on sugar beet pectin together with Driselase, approximately 90% of total FA in the substrate was released. Therefore, PcFAE1 may be an interesting candidate for hydrolysis of lignocellulosic materials and could have applications as a tool for production of FA from natural substrates.


Asunto(s)
Arabinosa/análogos & derivados , Hidrolasas de Éster Carboxílico/metabolismo , Ácidos Cumáricos/metabolismo , Galactosa/metabolismo , Pectinas/metabolismo , Penicillium chrysogenum/enzimología , Arabinosa/metabolismo , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/aislamiento & purificación , Clonación Molecular , Estabilidad de Enzimas , Expresión Génica , Concentración de Iones de Hidrógeno , Pichia/genética , Pichia/metabolismo , Especificidad por Sustrato , Temperatura
6.
FEBS Lett ; 592(8): 1378-1388, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29574769

RESUMEN

Exo-rhamnogalacturonan lyase from Penicillium chrysogenum 31B (PcRGLX) was recently classified as a member of polysaccharide lyase (PL) family 26 along with hypothetical proteins derived from various organisms. In this study, we determined the crystal structure of PcRGLX as the first structure of a member of this family. Based on the substrate-binding orientation and substrate specificity, PcRGLX is an exo-type PL that cleaves rhamnogalacturonan from the reducing end. Analysis of PcRGLX-complex structures with reaction products indicate that the active site possesses an L-shaped cleft that can accommodate galactosyl side chains, suggesting side-chain-bypassing activity in PcRGLX. Furthermore, we determined the residues critical for catalysis by analyzing the enzyme activities of inactive variants.


Asunto(s)
Proteínas Fúngicas/química , Pectinas/química , Penicillium chrysogenum/enzimología , Polisacárido Liasas/química , Catálisis , Cristalografía por Rayos X , Relación Estructura-Actividad
7.
Enzyme Microb Technol ; 98: 76-85, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28110667

RESUMEN

Rhamnogalacturonan (RG) I is one of the main components of pectins in the plant cell wall. We recently reported two RG I-degrading enzymes, endo-RG and exo-RG lyases, secreted by Penicillium chrysogenum 31B. Here, our aims were to purify a RG rhamnohydrolase (PcRGRH78A) from the culture filtrate of this strain and to characterize this enzyme. On the basis of the internal amino acid sequences, the encoding gene, Pcrgrh78A, was cloned and overexpressed in Aspergillus oryzae. The deduced amino acid sequence of PcRGRH78A is highly similar to an uncharacterized protein belonging to glycoside hydrolase family 78. Pfam analysis revealed that PcRGRH78A contains a bacterial α-l-rhamnosidase (PF05592) domain. PcRGRH78A shows optimal activity at 45°C and pH 5. The specificity of PcRGRH78A toward rhamnose (Rha)-containing substrates was compared with that of a P. chrysogenum α-l-rhamnosidase (PcRHA78B) belonging to glycoside hydrolase family 78. PcRGRH78A specifically hydrolyzes RG oligosaccharides that contain Rha at their nonreducing ends, releasing the Rha, but has no activity toward naringin, hesperidin, or rutin. In contrast, PcRHA78B effectively degrades p-nitrophenyl α-l-rhamnopyranoside and the three flavonoids, but not RG oligosaccharides. When galactosyl RG oligosaccharides were used as the substrate, PcRGRH78A released Rha in 3.5-fold greater amounts in the presence of ß-galactosidase than in its absence, indicating that PcRGRH78A preferentially acts on Rha residues without the galactose moiety at nonreducing ends. To our knowledge, this is the first report of a gene encoding a RG rhamnohydrolase.


Asunto(s)
Proteínas Fúngicas/genética , Genes Fúngicos , Glicósido Hidrolasas/genética , Penicillium chrysogenum/enzimología , Penicillium chrysogenum/genética , Aspergillus oryzae/enzimología , Aspergillus oryzae/genética , Clonación Molecular , Estabilidad de Enzimas , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Oligosacáridos/química , Oligosacáridos/metabolismo , Pectinas/química , Pectinas/metabolismo , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
8.
Enzyme Microb Technol ; 58-59: 80-6, 2014 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-24731829

RESUMEN

We previously described three α-l-arabinofuranosidases (ABFs) secreted by Penicillium chrysogenum 31B. Here, we purified a fourth ABF, termed PcABF43A, from the culture filtrate. The molecular mass of the enzyme was estimated to be 31kDa. PcABF43A had the highest activity at 35°C and at around pH 5. The enzyme activity was strong on sugar beet l-arabinan but weak on debranched arabinan and arabinoxylan. Low molecular-mass substrates such as p-nitrophenyl α-l-arabinofuranoside, α-1,5-l-arabinooligosaccharides, and branched arabinotriose were highly resistant to the action of PcABF43A. (1)H-NMR analysis revealed that PcABF43A hydrolyzed arabinosyl side chains linked to C-2 or C-3 of single-substituted arabinose residues in l-arabinan. Reports concerning enzymes specific for l-arabinan are quite limited. Pcabf43A cDNA encoding PcABF43A was isolated by in vitro cloning. The deduced amino acid sequence of the enzyme shows high similarities with the sequences of other fungal uncharacterized proteins. Semi-quantitative RT-PCR analysis indicated that the Pcabf43A gene was constitutively expressed in P. chrysogenum 31B at a low level, although the expression was induced with pectic components such as l-arabinose, l-rhamnose, and d-galacturonic acid. Analysis of enzymatic characteristics of PcABF43A, GH51 ABF (AFQ1), and GH54 ABF (AFS1) from P. chrysogenum suggested that PcABF43A and AFS1 function as debranching enzymes and AFQ1 plays a role of saccharification in the degradation of l-arabinan by this fungus.


Asunto(s)
Proteínas Fúngicas/aislamiento & purificación , Glicósido Hidrolasas/aislamiento & purificación , Penicillium chrysogenum/enzimología , Polisacáridos/metabolismo , Arabinosa/metabolismo , Medios de Cultivo , Inducción Enzimática/efectos de los fármacos , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Isoenzimas/genética , Isoenzimas/aislamiento & purificación , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Peso Molecular , Resonancia Magnética Nuclear Biomolecular , Pectinas/metabolismo , Penicillium chrysogenum/genética , Extractos Vegetales/metabolismo , Polisacáridos/farmacología , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Especificidad por Sustrato
9.
Biosci Biotechnol Biochem ; 76(5): 1032-4, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22738982

RESUMEN

ß-1,3-Xylan was prepared from the green alga, Caulerpa lentillifera, and hydrolyzed to oligosaccharides by a mild acid treatment. The average degree of polymerization was about 5. The oligosaccharides reduced the number of viable human breast cancer MCF-7 cells in a dose-dependent manner, and induced chromatin condensation and degradation of poly ADP-ribose polymerase, indicating that they induced apoptosis in MCF-7 cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Caulerpa/química , Oligosacáridos/farmacología , Extractos Vegetales/química , Xilanos/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cromatina/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Oligosacáridos/aislamiento & purificación , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Desnaturalización Proteica , Hidróxido de Sodio/química , Ácidos Sulfúricos/química , Xilanos/aislamiento & purificación
10.
Biosci Biotechnol Biochem ; 76(3): 501-5, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22451391

RESUMEN

Polysaccharides were extracted from Caulerpa lentillifera by treating with water and then purified by size-exclusion chromatography. The purified polysaccharides, termed SP1, were found to be sulfated xylogalactans with a molecular mass of more than 100 kDa. Adding SP1 to murine macrophage RAW 264.7 cells increased the production of nitric oxide (NO) in a dose-dependent manner. NO was found by immunoblotting and RT-PCR analyses to be synthesized by an inducible NO synthase. SP1 caused the degradation of IκB-α and the nuclear translocation of nuclear factor (NF)-κB subunit p65 in macrophage cells. SP1 also increased the phosphorylation of p38 mitogen-activated protein kinase (MAPK). These results demonstrate that SP1 activated macrophage cells via both the NF-κB and p38 MAPK signaling pathways. Moreover, SP1 increased the expression of various genes encoding cytokines, and the phagocytic activity of macrophage cells. These combined results show that SP1 immunostimulated the activity of macrophage cells.


Asunto(s)
Adyuvantes Inmunológicos/aislamiento & purificación , Adyuvantes Inmunológicos/farmacología , Caulerpa/química , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Polisacáridos/aislamiento & purificación , Polisacáridos/farmacología , Animales , Línea Celular , Citocinas/biosíntesis , Suplementos Dietéticos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Macrófagos/citología , Macrófagos/metabolismo , Ratones , FN-kappa B/metabolismo , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Óxido Nítrico Sintasa de Tipo II/genética , Fagocitosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA