Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 96(4): 772-785, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30118566

RESUMEN

O-Acetylated pectins are abundant in the primary cell wall of plants and growing evidence suggests they have important roles in plant cell growth and interaction with the environment. Despite their importance, genes required for O-acetylation of pectins are still largely unknown. In this study, we showed that TRICHOME BIREFRINGENCE LIKE 10 (AT3G06080) is involved in O-acetylation of pectins in Arabidopsis (Arabidopsis thaliana). The activity of the TBL10 promoter was strong in tissues where pectins are highly abundant (e.g. leaves). Two homozygous knock-out mutants of Arabidopsis, tbl10-1 and tbl10-2, were isolated and shown to exhibit reduced levels of wall-bound acetyl esters, equivalent of ~50% of the wild-type level in pectin-enriched fractions derived from leaves. Further fractionation revealed that the degree of acetylation of the pectin rhamnogalacturonan-I (RG-I) was reduced in the tbl10 mutant compared to the wild type, whereas the pectin homogalacturonan (HG) was unaffected. The degrees of acetylation in hemicelluloses (i.e. xyloglucan, xylan and mannan) were indistinguishable between the tbl10 mutants and the wild type. The mutant plants contained normal trichomes in leaves and exhibited a similar level of susceptibility to the phytopathogenic microorganisms Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea; while they displayed enhanced tolerance to drought. These results indicate that TBL10 is required for O-acetylation of RG-I, possibly as an acetyltransferase, and suggest that O-acetylated RG-I plays a role in abiotic stress responses in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Pectinas/metabolismo , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Botrytis/metabolismo , Glucanos/metabolismo , Mananos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/metabolismo , Polisacáridos/metabolismo , Pseudomonas syringae/metabolismo , Transcriptoma , Xilanos/metabolismo
2.
Planta ; 236(1): 115-28, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22270560

RESUMEN

Glycosyltransferase complexes are known to be involved in plant cell wall biosynthesis, as for example in cellulose. It is not known to what extent such complexes are involved in biosynthesis of pectin as well. To address this question, work was initiated on ARAD1 (ARABINAN DEFICIENT 1) and its close homolog ARAD2 of glycosyltransferase family GT47. Using bimolecular fluorescence complementation, Förster resonance energy transfer and non-reducing gel electrophoresis, we show that ARAD1 and ARAD2 are localized in the same Golgi compartment and form homo-and heterodimeric intermolecular dimers when expressed transiently in Nicotiana benthamiana. Biochemical analysis of arad2 cell wall or fractions hereof showed no difference in the monosaccharide composition, when compared with wild type. The double mutant arad1 arad2 had an arad1 cell wall phenotype and overexpression of ARAD2 did not complement the arad1 phenotype, indicating that ARAD1 and ARAD2 are not redundant enzymes. To investigate the cell wall structure of the mutants in detail, immunohistochemical analyses were carried out on arad1, arad2 and arad1 arad2 using the arabinan-specific monoclonal antibody LM13. In roots, the labeling pattern of arad2 was distinct from both that of wild type, arad1 and arad1 arad2. Likewise, in epidermal cell walls of inflorescence stems, LM13 binding differed between arad2 and WILD TYPE, arad1 or arad1 arad2. Altogether, these data show that ARAD2 is associated with arabinan biosynthesis, not redundant with ARAD1, and that the two glycosyltransferases may function in complexes held together by disulfide bridges.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Pared Celular/química , Pectinas/biosíntesis , Pentosiltransferasa/metabolismo , Reguladores del Crecimiento de las Plantas/biosíntesis , Polisacáridos/biosíntesis , Secuencia de Aminoácidos , Disulfuros/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Glicosiltransferasas/metabolismo , Mutación , Plantas Modificadas Genéticamente , Alineación de Secuencia , Nicotiana/metabolismo , Transformación Genética
3.
Proc Natl Acad Sci U S A ; 108(50): 20225-30, 2011 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-22135470

RESUMEN

Plant cell wall pectic polysaccharides are arguably the most complex carbohydrates in nature. Progress in understanding pectin synthesis has been slow due to its complex structure and difficulties in purifying and expressing the low-abundance, Golgi membrane-bound pectin biosynthetic enzymes. Arabidopsis galacturonosyltransferase (GAUT) 1 is an α-1,4-galacturonosyltransferase (GalAT) that synthesizes homogalacturonan (HG), the most abundant pectic polysaccharide. We now show that GAUT1 functions in a protein complex with the homologous GAUT7. Surprisingly, although both GAUT1 and GAUT7 are type II membrane proteins with single N-terminal transmembrane-spanning domains, the N-terminal region of GAUT1, including the transmembrane domain, is cleaved in vivo. This raises the question of how the processed GAUT1 is retained in the Golgi, the site of HG biosynthesis. We show that the anchoring of GAUT1 in the Golgi requires association with GAUT7 to form the GAUT1:GAUT7 complex. Proteomics analyses also identified 12 additional proteins that immunoprecipitate with the GAUT1:GAUT7 complex. This study provides conclusive evidence that the GAUT1:GAUT7 complex is the catalytic core of an HG:GalAT complex and that cell wall matrix polysaccharide biosynthesis occurs via protein complexes. The processing of GAUT1 to remove its N-terminal transmembrane domain and its anchoring in the Golgi by association with GAUT7 provides an example of how specific catalytic domains of plant cell wall biosynthetic glycosyltransferases could be assembled into protein complexes to enable the synthesis of the complex and developmentally and environmentally plastic plant cell wall.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/enzimología , Pared Celular/enzimología , Pectinas/metabolismo , Glucuronosiltransferasa , Aparato de Golgi/enzimología , Inmunoprecipitación , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteómica , Especificidad por Sustrato
4.
Plant Physiol ; 155(3): 1068-78, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21212300

RESUMEN

Nearly all polysaccharides in plant cell walls are O-acetylated, including the various pectic polysaccharides and the hemicelluloses xylan, mannan, and xyloglucan. However, the enzymes involved in the polysaccharide acetylation have not been identified. While the role of polysaccharide acetylation in vivo is unclear, it is known to reduce biofuel yield from lignocellulosic biomass by the inhibition of microorganisms used for fermentation. We have analyzed four Arabidopsis (Arabidopsis thaliana) homologs of the protein Cas1p known to be involved in polysaccharide O-acetylation in Cryptococcus neoformans. Loss-of-function mutants in one of the genes, designated REDUCED WALL ACETYLATION2 (RWA2), had decreased levels of acetylated cell wall polymers. Cell wall material isolated from mutant leaves and treated with alkali released about 20% lower amounts of acetic acid when compared with the wild type. The same level of acetate deficiency was found in several pectic polymers and in xyloglucan. Thus, the rwa2 mutations affect different polymers to the same extent. There were no obvious morphological or growth differences observed between the wild type and rwa2 mutants. However, both alleles of rwa2 displayed increased tolerance toward the necrotrophic fungal pathogen Botrytis cinerea.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/microbiología , Botrytis/fisiología , Pared Celular/metabolismo , Inmunidad Innata/inmunología , Mutación/genética , Enfermedades de las Plantas/inmunología , Acetilación , Adaptación Fisiológica , Alelos , Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , ADN Bacteriano/genética , Epítopos/inmunología , Proteínas Fúngicas/química , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucanos/metabolismo , Mutagénesis Insercional/genética , Proteínas Mutantes/aislamiento & purificación , Pectinas/metabolismo , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo , Transporte de Proteínas , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/metabolismo , Xilanos/metabolismo
5.
Methods Mol Biol ; 715: 153-67, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21222083

RESUMEN

Biosynthesis of pectin and hemicelluloses occurs in the Golgi apparatus and is thought to involve spatial regulations and complex formation of biosynthetic enzymes and proteins. We have demonstrated that a combination of heterologous expression of recombinant proteins tagged with fluorescent proteins and live cell imaging with confocal laser scanning microscopy (CLSM) allows efficient visualization of biosynthetic enzymes and proteins in subcellular compartments. We have also successfully utilized bimolecular fluorescence complementation (BiFC) for in situ visualization of protein-protein interactions of pectin biosynthetic enzymes and for the determination of their membrane topology in the Golgi apparatus.


Asunto(s)
Pared Celular/metabolismo , Aparato de Golgi/metabolismo , Nicotiana/metabolismo , Pectinas/biosíntesis , Proteínas de Plantas/biosíntesis , Agrobacterium tumefaciens/genética , Carboxiliasas/biosíntesis , Carboxiliasas/genética , Estructuras de la Membrana Celular/metabolismo , Vectores Genéticos , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Microscopía Confocal , Pentosiltransferasa/biosíntesis , Proteínas de Plantas/genética , Multimerización de Proteína , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Nicotiana/citología , Nicotiana/crecimiento & desarrollo , Transfección
6.
Plant Cell ; 20(5): 1289-302, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18460606

RESUMEN

Xylogalacturonan (XGA) is a class of pectic polysaccharide found in plant cell walls. The Arabidopsis thaliana locus At5g33290 encodes a predicted Type II membrane protein, and insertion mutants of the At5g33290 locus had decreased cell wall xylose. Immunological studies, enzymatic extraction of polysaccharides, monosaccharide linkage analysis, and oligosaccharide mass profiling were employed to identify the affected cell wall polymer. Pectic XGA was reduced to much lower levels in mutant than in wild-type leaves, indicating a role of At5g33290 in XGA biosynthesis. The mutated gene was designated xylogalacturonan deficient1 (xgd1). Transformation of the xgd1-1 mutant with the wild-type gene restored XGA to wild-type levels. XGD1 protein heterologously expressed in Nicotiana benthamiana catalyzed the transfer of xylose from UDP-xylose onto oligogalacturonides and endogenous acceptors. The products formed could be hydrolyzed with an XGA-specific hydrolase. These results confirm that the XGD1 protein is a XGA xylosyltransferase. The protein was shown by expression of a fluorescent fusion protein in N. benthamiana to be localized in the Golgi vesicles as expected for a glycosyltransferase involved in pectin biosynthesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Ácidos Hexurónicos/metabolismo , Pentosiltransferasa/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , ADN Bacteriano/genética , Prueba de Complementación Genética , Aparato de Golgi/metabolismo , Microscopía Fluorescente , Modelos Genéticos , Datos de Secuencia Molecular , Pectinas/metabolismo , Pentosiltransferasa/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Nicotiana/genética , Nicotiana/metabolismo , Xilosa/metabolismo , UDP Xilosa Proteína Xilosiltransferasa
7.
Plant Physiol ; 138(3): 1422-35, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15965015

RESUMEN

Tocopherols (vitamin E) are lipid-soluble antioxidants synthesized only by photosynthetic eukaryotes and some cyanobacteria, and have been assumed to play important roles in protecting photosynthetic membranes from oxidative stress. To test this hypothesis, tocopherol-deficient mutants of Synechocystis sp. strain PCC 6803 (slr1736 and slr1737 mutants) were challenged with a series of reactive oxygen species-generating and lipid peroxidation-inducing chemicals in combination with high-light (HL) intensity stress. The tocopherol-deficient mutants and wild type were indistinguishable in their growth responses to HL in the presence and absence of superoxide and singlet oxygen-generating chemicals. However, the mutants showed enhanced sensitivity to linoleic or linolenic acid treatments in combination with HL, consistent with tocopherols playing a crucial role in protecting Synechocystis sp. strain PCC 6803 cells from lipid peroxidation. The tocopherol-deficient mutants were also more susceptible to HL treatment in the presence of sublethal levels of norflurazon, an inhibitor of carotenoid synthesis, suggesting carotenoids and tocopherols functionally interact or have complementary or overlapping roles in protecting Synechocystis sp. strain PCC 6803 from lipid peroxidation and HL stress.


Asunto(s)
Peroxidación de Lípido , Synechocystis/fisiología , Tocoferoles/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Cinética , Luz , Peróxidos Lipídicos/metabolismo , Mutación , Especies Reactivas de Oxígeno/metabolismo , Synechocystis/genética , Synechocystis/crecimiento & desarrollo , Deficiencia de Vitamina E/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA