Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Redox Biol ; 44: 102016, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34038814

RESUMEN

Histidine-containing dipeptides (HCDs) are abundantly expressed in striated muscles. Although important properties have been ascribed to HCDs, including H+ buffering, regulation of Ca2+ transients and protection against oxidative stress, it remains unknown whether they play relevant functions in vivo. To investigate the in vivo roles of HCDs, we developed the first carnosine synthase knockout (CARNS1-/-) rat strain to investigate the impact of an absence of HCDs on skeletal and cardiac muscle function. Male wild-type (WT) and knockout rats (4 months-old) were used. Skeletal muscle function was assessed by an exercise tolerance test, contractile function in situ and muscle buffering capacity in vitro. Cardiac function was assessed in vivo by echocardiography and cardiac electrical activity by electrocardiography. Cardiomyocyte contractile function was assessed in isolated cardiomyocytes by measuring sarcomere contractility, along with the determination of Ca2+ transient. Markers of oxidative stress, mitochondrial function and expression of proteins were also evaluated in cardiac muscle. Animals were supplemented with carnosine (1.8% in drinking water for 12 weeks) in an attempt to rescue tissue HCDs levels and function. CARNS1-/- resulted in the complete absence of carnosine and anserine, but it did not affect exercise capacity, skeletal muscle force production, fatigability or buffering capacity in vitro, indicating that these are not essential for pH regulation and function in skeletal muscle. In cardiac muscle, however, CARNS1-/- resulted in a significant impairment of contractile function, which was confirmed both in vivo and ex vivo in isolated sarcomeres. Impaired systolic and diastolic dysfunction were accompanied by reduced intracellular Ca2+ peaks and slowed Ca2+ removal, but not by increased markers of oxidative stress or impaired mitochondrial respiration. No relevant increases in muscle carnosine content were observed after carnosine supplementation. Results show that a primary function of HCDs in cardiac muscle is the regulation of Ca2+ handling and excitation-contraction coupling.


Asunto(s)
Carnosina , Dipéptidos , Animales , Anserina , Histidina , Masculino , Músculo Esquelético , Miocitos Cardíacos , Ratas
2.
Am J Physiol Cell Physiol ; 318(4): C777-C786, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32101455

RESUMEN

To test whether high circulating insulin concentrations influence the transport of ß-alanine into skeletal muscle at either saturating or subsaturating ß-alanine concentrations, we conducted two experiments whereby ß-alanine and insulin concentrations were controlled. In experiment 1, 12 men received supraphysiological amounts of ß-alanine intravenously (0.11 g·kg-1·min-1 for 150 min), with or without insulin infusion. ß-Alanine and carnosine were measured in muscle before and 30 min after infusion. Blood samples were taken throughout the infusion protocol for plasma insulin and ß-alanine analyses. ß-Alanine content in 24-h urine was assessed. In experiment 2, six men ingested typical doses of ß-alanine (10 mg/kg) before insulin infusion or no infusion. ß-Alanine was assessed in muscle before and 120 min following ingestion. In experiment 1, no differences between conditions were shown for plasma ß-alanine, muscle ß-alanine, muscle carnosine and urinary ß-alanine concentrations (all P > 0.05). In experiment 2, no differences between conditions were shown for plasma ß-alanine or muscle ß-alanine concentrations (all P > 0.05). Hyperinsulinemia did not increase ß-alanine uptake by skeletal muscle cells, neither when substrate concentrations exceed the Vmax of ß-alanine transporter TauT nor when it was below saturation. These results suggest that increasing insulin concentration is not necessary to maximize ß-alanine transport into muscle following ß-alanine intake.


Asunto(s)
Transporte Biológico/fisiología , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Carnosina/metabolismo , Suplementos Dietéticos , Humanos , Masculino , Taurina/metabolismo , beta-Alanina/administración & dosificación , beta-Alanina/sangre , beta-Alanina/metabolismo
3.
J Gerontol A Biol Sci Med Sci ; 75(5): 931-938, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-31257405

RESUMEN

BACKGROUND: Creatine supplementation could be a nonexpensive, safe, and effective dietary intervention to counteract bone loss. The aim of this study was to investigate whether long-term creatine supplementation can improve bone health in older, postmenopausal women. METHODS: A double-blind, placebo-controlled, parallel-group, randomized trial was conducted between November 2011 and December 2017 in Sao Paulo, Brazil. Two hundred postmenopausal women with osteopenia were randomly allocated to receive either creatine monohydrate (3 g/d) or placebo for 2 years. At baseline and after 12 and 24 months, we assessed areal bone mineral density (aBMD; primary outcome), lean and fat mass (through dual X-ray absorptiometry), volumetric BMD and bone microarchitecture parameters, biochemical bone markers, physical function and strength, and the number of falls and fractures. Possible adverse effects were self-reported. RESULTS: Lumbar spine (p < .001), femoral neck (p < .001), and total femur aBMD (p = .032) decreased across time; however, no interaction effect was observed (all p > .050). Bone markers, microarchitecture parameters, and the number of falls/fractures were not changed with creatine (all p > .050). Lean mass and appendicular skeletal muscle mass increased throughout the intervention (p < .001), with no additive effect of creatine (p = .731 and p = .397, respectively). Creatine did not affect health-related laboratory parameters. CONCLUSION: Creatine supplementation more than 2 years did not improve bone health in older, postmenopausal women with osteopenia, nor did it affect lean mass or muscle function in this population. This refutes the long-lasting notion that this dietary supplement alone has osteogenic or anabolic properties in the long run. CLINICAL TRIAL REGISTRY: Clinicaltrials.gov: NCT: 01472393.


Asunto(s)
Densidad Ósea/efectos de los fármacos , Enfermedades Óseas Metabólicas/tratamiento farmacológico , Creatina/administración & dosificación , Osteoporosis/prevención & control , Absorciometría de Fotón , Accidentes por Caídas/estadística & datos numéricos , Anciano , Brasil/epidemiología , Método Doble Ciego , Femenino , Fracturas Óseas/epidemiología , Humanos , Persona de Mediana Edad , Fuerza Muscular/efectos de los fármacos , Posmenopausia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA