Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 7(12): e52525, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23300698

RESUMEN

The recently discovered Nesfatin-1 plays a role in appetite regulation as a satiety factor through hypothalamic leptin-independent mechanisms. Nesfatin-1 is co-expressed with Melanin-Concentrating Hormone (MCH) in neurons from the tuberal hypothalamic area (THA) which are recruited during sleep states, especially paradoxical sleep (PS). To help decipher the contribution of this contingent of THA neurons to sleep regulatory mechanisms, we thus investigated in rats whether the co-factor Nesfatin-1 is also endowed with sleep-modulating properties. Here, we found that the disruption of the brain Nesfatin-1 signaling achieved by icv administration of Nesfatin-1 antiserum or antisense against the nucleobindin2 (NUCB2) prohormone suppressed PS with little, if any alteration of slow wave sleep (SWS). Further, the infusion of Nesfatin-1 antiserum after a selective PS deprivation, designed for elevating PS needs, severely prevented the ensuing expected PS recovery. Strengthening these pharmacological data, we finally demonstrated by using c-Fos as an index of neuronal activation that the recruitment of Nesfatin-1-immunoreactive neurons within THA is positively correlated to PS but not to SWS amounts experienced by rats prior to sacrifice. In conclusion, this work supports a functional contribution of the Nesfatin-1 signaling, operated by THA neurons, to PS regulatory mechanisms. We propose that these neurons, likely releasing MCH as a synergistic factor, constitute an appropriate lever by which the hypothalamus may integrate endogenous signals to adapt the ultradian rhythm and maintenance of PS in a manner dictated by homeostatic needs. This could be done through the inhibition of downstream targets comprised primarily of the local hypothalamic wake-active orexin- and histamine-containing neurons.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al ADN/metabolismo , Homeostasis , Hipotálamo/citología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Respuesta de Saciedad , Sueño REM/fisiología , Animales , Regulación de la Expresión Génica , Hipotálamo/patología , Hipotálamo/fisiología , Hipotálamo/fisiopatología , Masculino , Neuronas/citología , Neuronas/patología , Nucleobindinas , Polisomnografía , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Privación de Sueño/metabolismo , Privación de Sueño/patología , Privación de Sueño/fisiopatología , Factores de Tiempo
2.
Sleep Med Rev ; 15(3): 153-63, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21115377

RESUMEN

Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by the loss of muscle atonia during paradoxical (REM) sleep (PS). Conversely, cataplexy, one of the key symptoms of narcolepsy, is a striking sudden episode of muscle weakness triggered by emotions during wakefulness, and comparable to REM sleep atonia. The neuronal dysfunctions responsible for RBD and cataplexy are not known. In the present review, we present the most recent results on the neuronal network responsible for PS. Based on these results, we propose an updated integrated model of the mechanisms responsible for PS and explore different hypotheses explaining RBD and cataplexy. We propose that RBD is due to a specific degeneration of a sub-population of PS-on glutamatergic neurons specifically responsible of muscle atonia, localized in the caudal pontine sublaterodorsal tegmental nucleus (SLD). Another possibility is the occurrence in RBD patients of a specific lesion of the glycinergic/GABAergic pre-motoneurons localized in the medullary ventral gigantocellular reticular nucleus. Conversely, cataplexy in narcoleptics would be due to the activation during waking of the caudal PS-on SLD neurons responsible for muscle atonia. A phasic glutamatergic excitatory pathway from the central amygdala to the SLD PS-on neurons activated during emotion would induce such activation. In normal conditions, the glutamate excitation would be blocked by the simultaneous excitation by the hypocretins of the PS-off GABAergic neurons localized in the ventrolateral periaqueductal gray and the adjacent deep mesencephalic reticular nucleus, gating the activation of the PS-on SLD neurons.


Asunto(s)
Encéfalo/fisiopatología , Narcolepsia/fisiopatología , Red Nerviosa/fisiopatología , Trastorno de la Conducta del Sueño REM/fisiopatología , Sueño REM/fisiología , Amígdala del Cerebelo/fisiopatología , Animales , Mapeo Encefálico , Cataplejía/fisiopatología , Emociones/fisiología , Glutamina/fisiología , Glicina/fisiología , Humanos , Hipotálamo/fisiopatología , Bulbo Raquídeo/fisiopatología , Neuronas Motoras/fisiología , Tono Muscular/fisiología , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/fisiología , Enfermedad de Parkinson/fisiopatología , Núcleo Tegmental Pedunculopontino/fisiopatología , Puente/fisiopatología , Vigilia/fisiología , Ácido gamma-Aminobutírico/fisiología
3.
J Chem Neuroanat ; 39(4): 262-71, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20211244

RESUMEN

Formerly believed to contribute to behavioural waking (W) alone, dopaminergic (DA) neurons are now also known to participate in the regulation of paradoxical sleep (PS or REM) in mammals. Indeed, stimulation of postsynaptic DA1 receptors with agonists induces a reduction in the daily amount of PS. DA neurons in the ventral tegmental area were recently shown to fire in bursts during PS, but nothing is known about the activity of the other DA cell groups in relation to waking or PS. To fulfil this gap, we used a protocol in which rats were maintained in continuous W for 3h in a novel environment, or specifically deprived of PS for 3 days with some of them allowed to recover from this deprivation. A double immunohistochemical labeling with Fos and tyrosine hydroxylase was then performed. DA neurons in the substantia nigra (A9) and ventral tegmental area (A10), and its dorsocaudal extension in the periaqueductal gray (A10dc), almost never showed a Fos-immunoreactive nucleus, regardless of the experimental condition. The caudal hypothalamic (A11) group showed a moderate activation after PS deprivation and novel environment. During PS-recovery, the zona incerta (A13) group contained a significant number and percentage of double-labeled neurons. These results suggest that some DA neurons (A11) could participate in waking and/or the inhibition of PS during PS deprivation whereas others (A13) would be involved in the control of PS.


Asunto(s)
Dopamina/metabolismo , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Sueño REM/fisiología , Sustancia Negra/metabolismo , Área Tegmental Ventral/metabolismo , Vigilia/fisiología , Animales , Biomarcadores/análisis , Biomarcadores/metabolismo , Mapeo Encefálico , Hipotálamo/citología , Hipotálamo/metabolismo , Inmunohistoquímica , Masculino , Red Nerviosa/citología , Red Nerviosa/metabolismo , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Ratas , Sustancia Negra/citología , Tirosina 3-Monooxigenasa/análisis , Tirosina 3-Monooxigenasa/metabolismo , Área Tegmental Ventral/citología
4.
Neuroreport ; 16(10): 1069-73, 2005 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-15973150

RESUMEN

The perifornical-lateral hypothalamic area is implicated in regulating waking and paradoxical sleep. The blockade of GABAA receptors by iontophoretic applications of bicuculline (or gabazine) into the perifornical-lateral hypothalamic area induced a continuous quiet waking state associated to a robust muscle tone in head-restrained rats. During the effects, sleep was totally suppressed. In rats killed at the end of a 90 min ejection of bicuculline, Fos expression was induced in approximately 28% of the neurons immunoreactive for hypocretin and in approximately 3% of the neurons immunostained for melanin-concentrating hormone within the ejection site. These results suggest that neurons containing melanin-concentrating hormone are not active during waking and that the lack of a potent GABAergic influence during waking is consistent with their role in sleep regulation.


Asunto(s)
Hormonas Hipotalámicas/fisiología , Hipotálamo/fisiología , Melaninas/fisiología , Neuronas/fisiología , Hormonas Hipofisarias/fisiología , Receptores de GABA-A/fisiología , Fases del Sueño/fisiología , Vigilia/fisiología , Animales , Electroencefalografía/métodos , Antagonistas del GABA/farmacología , Antagonistas de Receptores de GABA-A , Hipotálamo/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Fases del Sueño/efectos de los fármacos , Vigilia/efectos de los fármacos
5.
BMC Neurosci ; 4: 19, 2003 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-12964948

RESUMEN

BACKGROUND: Peptidergic neurons containing the melanin-concentrating hormone (MCH) and the hypocretins (or orexins) are intermingled in the zona incerta, perifornical nucleus and lateral hypothalamic area. Both types of neurons have been implicated in the integrated regulation of energy homeostasis and body weight. Hypocretin neurons have also been involved in sleep-wake regulation and narcolepsy. We therefore sought to determine whether hypocretin and MCH neurons express Fos in association with enhanced paradoxical sleep (PS or REM sleep) during the rebound following PS deprivation. Next, we compared the effect of MCH and NaCl intracerebroventricular (ICV) administrations on sleep stage quantities to further determine whether MCH neurons play an active role in PS regulation. RESULTS: Here we show that the MCH but not the hypocretin neurons are strongly active during PS, evidenced through combined hypocretin, MCH, and Fos immunostainings in three groups of rats (PS Control, PS Deprived and PS Recovery rats). Further, we show that ICV administration of MCH induces a dose-dependent increase in PS (up to 200%) and slow wave sleep (up to 70%) quantities. CONCLUSION: These results indicate that MCH is a powerful hypnogenic factor. MCH neurons might play a key role in the state of PS via their widespread projections in the central nervous system.


Asunto(s)
Sistema Nervioso Central/fisiología , Hormonas Hipotalámicas/biosíntesis , Péptidos y Proteínas de Señalización Intracelular , Melaninas/biosíntesis , Neuronas/fisiología , Hormonas Hipofisarias/biosíntesis , Sueño REM/fisiología , Animales , Proteínas Portadoras/biosíntesis , Recuento de Células , Sistema Nervioso Central/citología , Sistema Nervioso Central/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/fisiología , Relación Dosis-Respuesta a Droga , Electroencefalografía , Electromiografía , Hormonas Hipotalámicas/farmacología , Hipotálamo/citología , Hipotálamo/metabolismo , Inyecciones Intraventriculares , Masculino , Melaninas/farmacología , Neuronas/metabolismo , Neuropéptidos/biosíntesis , Orexinas , Hormonas Hipofisarias/farmacología , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Ratas , Ratas Sprague-Dawley , Sueño/efectos de los fármacos , Sueño/fisiología , Fases del Sueño/efectos de los fármacos , Fases del Sueño/fisiología , Sueño REM/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA