Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Life (Basel) ; 13(10)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37895419

RESUMEN

Due to a continual growth in the world's population and the prohibition of antibiotics in animal production, the livestock industry faces significant challenges in the global demand for meat, eggs, and dairy products. The growing demand for organic products and the prohibition on antibiotic growth promoters (AGPs) have compelled animal nutrition experts to search for natural substitutes that include medical plants and beneficial microorganisms. Natural feed additives like probiotics are found to be more effective than AGPs in reducing the load of harmful intestinal pathogens. One of the probiotics that has generated considerable interest since ancient times is yeast. Yeast is used as a supplement in animal feeds due to its relatively high protein, amino acid, energy, and micronutrient content. Yeast byproducts such as yeast cells and cell walls contain nutraceutical compounds (i.e., ß-glucans, mannooligosaccharides, and nucleotides) and have been shown to improve animal growth performance and health. Though the application of yeast supplements has been reviewed to date, only a scarce amount of information exists on the yeast-derived products in non-ruminant nutrition. Additionally, it is difficult for nutritionists to differentiate the characteristics, composition, and optimal feeding among the diverse number of yeast-containing products. Due to the increasing popularity of using yeast-based products in animal feeds, the development of analytical approaches to estimate yeast and its components in these products is greatly needed. Thus, in this review, we intend to provide current knowledge of different categories of commercially available yeast and yeast-derived additives, along with their role in improving animal growth performance and health, their proposed mechanisms of action, and the challenges of quantifying yeast content and biologically active components.

2.
J Anim Physiol Anim Nutr (Berl) ; 107(1): 121-128, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34957596

RESUMEN

BACKGROUND: The intension of this study was to examine the effect of dietary whey protein supplementation on the reproduction performance, growth performance and blood profile of sow and their offspring. From Day 114 of lactation to 21 days of weaning, a total of 21 sows (n = 7/ treatment) (Landrace × Yorkshire) were blocked according to average parity (2.4) and allocated to 1 of 3 dietary treatments: (i) CON-corn-soybean meal based basal diet, (ii) WPC-CON + 0.047% WPC whey protein concentrate (WPC) and (iii) WPH-CON + 0.02% whey protein hydrolysate (WPH). RESULTS: The reproduction performance of sows was not affected by WPC or WPH supplementation. However, piglets that were born to WPC and WPH group sows showed higher body weight at birth (p = 0.057) and at weaning (p = 0.018). After farrowing, WPC and WPH group sows showed decreased (p = 0.043) RBC count and total iron-binding count (TIBC) (p = 0.046), whereas at the end of the experiment, the blood profile including red blood cells, iron, haemoglobulin and TIBC was significantly increased (p =0.042, 0.049, 0.051 and 0.052 respectively) in WPC group piglets compared to the CON and WPH groups. CONCLUSION: Based on the positive impact on the blood profile of piglets, we conclude that whey protein supplement could serve as a potential energy source to suit lactating sows that could eventually benefit the performance of their offspring.


Asunto(s)
Lactancia , Suero Lácteo , Embarazo , Animales , Porcinos , Femenino , Proteína de Suero de Leche/farmacología , Suplementos Dietéticos , Dieta/veterinaria , Alimentación Animal/análisis
3.
Foods ; 13(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38201133

RESUMEN

This study aims to investigate the effect of synbiotic-glyconutrients (SB-GLN) additive on growth performance, fatty acid profile, sensory characteristics, and texture profile analysis in finishing pig. Landrace × Yorkshire ♀ × (Duroc ♂) (n = 60) pigs with average body weight of 54.88 ± 1 kg were allocated into one of three dietary treatment groups in a complete randomized block design with four replicates of five pigs (two barrows and three gilts) per pen. The test treatments (TRT) were CON-corn-soybean meal basal diet; TRT 1-CON+ 0.25% SB-GLN; and TRT 2-CON + 0.5% SB-GLN. SB-GLN contains 1 × 107 CFU/g each of: L. plantarum, B. subtilis, and S. Cerevisiae, and 5% yeast cell wall ß-Glucans (from S. Cerevisiae), and 14% of glyconutrients (N-acetylglucosamine, D-xylose, and Fucose). Pigs fed SB-GLN supplement showed linearly increased (p < 0.05) body weight, daily gain, and daily feed at the end of week 5, 10, and the overall experimental period. In addition, G:F showed a tendency to decrease (p < 0.1) at the end of week 10 and the overall experimental period. In addition, pigs that received a graded level of SB-GLN showed a tendency to increase (p < 0.1) their longiness muscle area and decreased (p < 0.05) cooking loss. The sensory results of pork belly (tenderness and juiciness) and loin (flavor) meat, and the texture profile analysis parameters of hardness 1, cohesiveness, and gumminess (belly), and hardness 2, chewiness, and springiness (loin) meat were linearly higher (p < 0.05) in the SB-GLN group. The values of fatty acid like butyric acid, caproic acid, undecylic acid, tridecylic acid, myristic acid, pentadecyclic acid, palmitic acid, margaric acid, stearic acid, eicosapentaenoic acid, and lignoceric acid were higher in pork belly fat of the SB-GLN-treated group compared to CON. Moreover, pigs that received SB-GLN exhibited higher crude fat and lauric acid, myristic acid, pentacyclic acid, palmitic acid, margaric acid, Octadecanoic acid, Oleic acid, linoleic acid, and eicosapentaenoic acid FA profiles in belly-lean meat. Also, the FA profile of the SB-GLN-treated group loin-lean meat showed increased lauric acid, myristic acid, palmitic acid, margaric acid, stearic acid, oleic acid, linoleic acid, alpha-linoleic acid, and eicosapentaenoic acid. The SB-GLN-treated group pork belly fat, belly lean meat, and loin-lean meat showed linearly increased docosahexaenoic acid, nervonic acid, omega 3, omega 6, ω-6: ω-3, Σ saturated FA, Σ un-SFA, Σ mono-USFA, Σ poly-USFA, MUFA/SFA, and PUFA/SFA. Therefore, we infer that the inclusion of 0.5% SB-GLN additive to finishing pig diet would be more beneficial to enhance their performance, and to increase the essential FA profile of pork meat for human consumption.

4.
J Anim Physiol Anim Nutr (Berl) ; 106(1): 88-97, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34101262

RESUMEN

A total of 120 finishing pigs with an average initial body weight of 49.72 ± 0.08 kg (mean ± SD) were used in a 10 weeks trial. Pigs were randomly allotted into one of four dietary treatments (6 replicate pen/treatment, 5 pigs/pen). The nutritional dietary treatments were corn, soy bean meal, palm- kernel meal, and rapeseed meal based basal diets supplemented with 0, 0.05, 0.10, and 0.20% of Achyranthes japonica extract (AJE). Dietary inclusion of AJE supplementation had trend to increase the body weight and average daily gain of pigs at week 10 and the overall experimental period, respectively. The graded level of AJE supplement had increase the total track digestibility dry matter (p = 0.067) only at week 5 while nitrogen and energy digestibility (p < 0.05) was linearly increased at both weeks 5 and 10. During week 10, pigs fed with an increased level of AJE supplementation had linearly increase (p < 0.05) fecal Lactobacillus counts. In addition, AJE supplementation in the diet of finishing pigs had linearly decreased (p > 0.05) NH3 emission of gas and trend to decrease total mercaptans during week 10. Dietary inclusion of AJE supplement resulted in a linear increase in the blood protein concentration level. Moreover, drip loss was linearly reduced on day 5 and day 7 (p > 0.05) post slaughter in finishing pigs fed with gradually increased levels of AJE supplementation. During weeks 5 and 10, pigs fed with graded levels of AJE supplementation had linearly increase (p < 0.05) the backfat thickness and lean meat percentage. Therefore we conclude that dietary inclusion of AJE with palm kernel meal and rapeseed meal could be benificial to enhance the growth performance, nutrient digestibility, fecal microbial, blood prolife, meat quality and reduced fecal gas emission in finishing pigs.


Asunto(s)
Achyranthes , Brassica napus , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Suplementos Dietéticos , Extractos Vegetales , Glycine max , Porcinos
5.
J Anim Physiol Anim Nutr (Berl) ; 106(1): 61-68, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33779004

RESUMEN

A total of one hundred and forty, 28 day-old weaner pigs [Duroc × (Yorkshire × Landrace)] with an initial body weight (BW) of 6.56 ± 1.25 kg were used in a six-week treatment (7 replicate pens per treatment; barrows, and 2 gilts/pen) to evaluate the effect of low-nutrient-density diet supplement with probiotic mixture supplementation on the growth performance, nutrient digestibility, faecal microbial and gas emission of weaner pigs. Pigs fed low-density diet with probiotic mixture supplementation had linearly increased (p = 0.028, 0.014) the body weight (BW) at weeks 3, and 6. Moreover, average daily gain (ADG) was linearly improved (p = 0.018, 0.014, 0.014) at weeks 3, 6 and the overall experiment. However, there were no interactive effects found on the nutrient digestibility of dry matter (DM), nitrogen (N) and energy (E) throughout the experiment. Dietary inclusion of a low-density diet with probiotic mixture supplementation has improved the faecal lactobacillus counts linearly, but E. coli was unaffected during the trial. On day 42, Ammonium gas emission was significantly decreased in pigs fed a low-density diet with probiotic mixture supplementation. However, H2 S, acetic acid and CO2 were not significantly affected by the probiotic mixture supplementation diet. Low-density diet with probiotic mixture supplementation had positively affected the growth performance, faecal microbial and faecal gas emission on weaner pigs.


Asunto(s)
Bacillus subtilis , Probióticos , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Suplementos Dietéticos , Digestión , Escherichia coli , Femenino , Nutrientes , Saccharomyces cerevisiae , Porcinos
6.
Acta Biochim Pol ; 68(2): 287-292, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33974793

RESUMEN

The current research aimed to evaluate the effects of dietary inclusion of wood vinegar on growth performance, nutrient digestibility, and meat quality of grower-finisher pigs. In total, 132 crossbred ({Landrace × Yorkshire × Duroc}) grower-finisher pigs with an initial average body weight 30.48±4.23 kg (11 replications/treatment; 4 pigs/pen) were used in a 16-week trial. Based on the body weight and sex the pigs were randomly assigned to three treatments. Dietary treatments consisted of the basal diet (CON) or the basal diet supplemented with 0.05% and 0.1% wood vinegar. The inclusion of dietary wood vinegar supplementation significantly improved the body weight gain (BWG) and average daily gain (ADG) (P=0.0521; 0.043) of pigs at week 16. The total track nutrient digestibility of dry matter and nitrogen was linearly increased in pigs fed with an increased amount of wood vinegar. In addition, dietary supplementation of wood vinegar linearly improved longissimus muscle area, yellowness (b*) of the meat color, and carcass weight (P<0.05) and a tendency in linear reduction was observed for water holding capacity (P=0.068), and drip loss at d5 and d7 (P=0.091, 0.069). However, there was no significant difference found for lean meat percentage and backfat thickness in this experiment. In summary, dietary inclusion of wood vinegar supplementation enhanced growth performance and total track digestibility of nutrients and had no effects on lean meat percentage and backfat thickness of grower-finisher pigs.


Asunto(s)
Alimentación Animal/análisis , Digestión , Carne/análisis , Porcinos/crecimiento & desarrollo , Terpenos/administración & dosificación , Ácido Acético/administración & dosificación , Tejido Adiposo/crecimiento & desarrollo , Animales , Dieta/métodos , Suplementos Dietéticos , Femenino , Masculino , Nutrientes , Aumento de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA